Skip to main content
Log in

Iterative Adaptive Nonconvex Low-Rank Tensor Approximation to Image Restoration Based on ADMM

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, in order to recover more finer details of the image and to avoid the loss of image structure information for image restoration problem, we develop an iterative adaptive weighted core tensor thresholding (IAWCTT) approach based on the alternating direction method of multipliers (ADMM). By observing the decoupling property of the ADMM algorithm, we first propose that the key step to image restoration is to tackle the denoising subproblem efficiently using appropriate prior information. Secondly, by analyzing the properties of the core tensor, we propose that low-rank tensor approximation can be implemented by penalizing the core tensor itself, instead of penalizing the CP rank, Tucker rank or the multilinear rank and Tubal rank. The IAWCTT approach is proposed to solve the denoising subproblem in the ADMM framework, and we claim that such an adaptive weighted scheme is equivalent to a kind of nonconvex penalty for the core tensor; thus, it is unnecessary to use the nonconvex penalty term to induce strong sparse/low-rank solution in image restoration optimization problem, because the scheme that selecting appropriate weights to the convex penalty term can also lead to strong sparse/low-rank solution. Numerical experiments show that our proposed model and algorithm are comparable to other state-of-the-art models and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang, L., Zuo, W.: Image restoration: from sparse and low rank priors to deep priors. IEEE Signal Process. Mag. 34(5), 172–179 (2017)

    Google Scholar 

  2. Candés, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    MathSciNet  MATH  Google Scholar 

  3. Wright, J., Ganesh, A., Rao, S., Peng, Y., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in Neural Information Processing Systems, vol. 22, pp. 2080–2088 (2009)

  4. Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: IEEE Int. Conf. Comput. Vis. Pattern Recognit., pp. 1791–1798 (2010)

  5. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Peng, Y., Suo, J., Dai, Q., Xu, W.: Reweighted low-rank matrix recovery and its application in image restoration. IEEE Trans. Cybern. 44(12), 2418–2430 (2014)

    Google Scholar 

  7. Zhang, H., He, W., Zhang, L., Shen, H., Yuan, Q.: Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 52(8), 4729–4743 (2014)

    Google Scholar 

  8. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mltteilungen 36(1), 53–78 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 35(4), 849–862 (2013)

    Google Scholar 

  10. Pan, H., Huang, T., Ma, T.: Two-step group-based adaptive soft-thresholding algorithm for image denoising. Optik 127(1), 503–509 (2016)

    Google Scholar 

  11. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. ArXiv preprint arXiv:1705.09912

  12. Zhao, Q., Meng, D., Kong, X., Xie, Q., Cao, W., Wang, Y., Xu, Z.: A novel sparsity measure for tensor recovery. In: IEEE Int. Conf. Comput. Vis., pp. 271–279 (2015)

  13. Li, C., Ma, Y., Huang, J., Mei, X., Ma, J.: Hyperspectral image denoising using the robust low-rank tensor recovery. J. Opt. Soc. Am. A 32(9), 1604–1612 (2015)

    Google Scholar 

  14. Wu, Z., Wang, Q., Jin, J., Shen, Y.: Structure tensor total variation-regularized weighted nuclear norm minimization for hyperspectral image mixed denoising. Signal Process. 131, 202–219 (2017)

    Google Scholar 

  15. Liang, J., He, Y., Liu, D., Zeng, X.: Image fusion using higher order singular value decomposition. IEEE Trans. Image Process. 21(5), 2898–2909 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Google Scholar 

  17. Collins, M., Cohen, S.B.: Tensor decomposition for fast parsing with latent-variable PCFGs. In: Advances in Neural Information Processing Systems, pp. 2519–2527 (2012)

  18. Chierchia, G., Pustelnik, N., Pesquet-Popescu, B., Pesquet, J.-C.: A nonlocal structure tensor based approach for multicomponent image recovery problems. IEEE Trans. Image Process. 23(12), 5531–5544 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Lita, L., Pelican, E.: A low-rank tensor-based algorithm for face recognition. Appl. Math. Model. 39(3–4), 1266–1274 (2015)

    MathSciNet  Google Scholar 

  20. Geng, J., Wang, L., Xu, Y., Wang, X.: A weighted nuclear norm method for tensor completion. Int. J. Signal Process. Image Process. Pattern Recogit. 7(1), 1–12 (2014)

    Google Scholar 

  21. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    MathSciNet  Google Scholar 

  22. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: IEEE Int. Conf. Comput. Vis., pp. 2272–2279 (2009)

  23. Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Dong, W., Li, G., Shi, G., Li, X., Ma, Y.: Low-rank tensor approximation with Laplacian scale mixture modeling for multiframe image denoising. In: IEEE Int. Conf. Comput. Vis. (2015)

  25. Chang, G., Yu, B., Vetterli, M.: Spatially adaptive wavelet thresholding based on context modeling for image denoising. IEEE Trans. Image Process. 9(9), 1522–1531 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Lyu, S., Simoncelli, E.: Modeling multiscale subbands of photographic images with fields of gaussian scale mixtures. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 693–706 (2009)

    Google Scholar 

  27. Candes, E., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted L1 minimization. J. Fourier Anal. Appl. 14(5), 877–905 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481–2499 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Dong, W., Shi, G., Ma, Y., Li, X.: Image restoration via simultaneous sparse coding: where structured sparsity meets Gaussian scale mixture. Int. J. Comput. Vis. 114(2–3), 217–232 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Papyan, V., Elad, M.: Multi-scale patch-based image restoration. IEEE Trans. Image Process. 25(1), 249–261 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

    Google Scholar 

  32. Moulin, P., Liu, J.: Analysis of multiresolution image denoising schemes using generalized-Gaussian and complexity priors. IEEE Trans. Inf. Theory 45, 909–919 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Nikolova, M., Ng, M.K., Tam, C.P.: Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans. Image Process. 19(12), 3073–3088 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems (2009)

  35. Zuo, W., Meng, D., Zhang, L., Feng, X., Zhang, D.; A generalized iterated shrinkage algorithm for non-convex sparse coding. In: IEEE Int. Conf. Comput. Vis., pp. 217–224 (2013)

  36. Selesnick, I.W., Bayram, I.: Sparse signal estimation by maximally sparse convex optimization. IEEE Trans. Signal Process. 62(5), 1072–1092 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Ding, Y., Selesnick, I.W.: Artifact-free wavelet denoising: non-convex sparse regularization, convex optimization. IEEE Signal Process. Lett. 22(9), 1364–1368 (2015)

    Google Scholar 

  38. Kiers, H.A.L.: Towards a standardized notation and terminology in multiway analysis. J. Chemom. 14(3), 105–122 (2000)

    Google Scholar 

  39. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    MathSciNet  Google Scholar 

  40. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third order ternsors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Selesnick, I.: Penalty and shrinkage functions for sparse signal processing. In: Connexions 11 (2012)

  42. Lathauwer, L.D.: Signal Processing Based on Multilinear Algebra. Katholieke Universiteit Leuven, Leuven (1997)

    Google Scholar 

  43. Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: Novel methods for multilinear data completion and de-noising based on tensor-SVD. In: IEEE Int. Conf. Comput. Vis. Pattern Recognit., pp. 3842–3849 (2014)

  44. Zhou, P., Lu, C., Lin, Z., Zhao, C.: Tensor factorization for low-rank tensor completion. IEEE Trans. Image Process. 27(3), 1152–1163 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 1–19 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21(4), 1715–1728 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Wen, Y., Ng, M., Ching, W.: Iterative algorithms based on decoupling of deblurring and denoising for image restroation. SIAM J. Sci. Comput. 30(5), 2655–2674 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restoration. In: IEEE Int. Conf. Comput. Vis. Pattern Recognit. (2017)

  49. Lu, C., Tang, J., Yan, S., Lin, Z.: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm. IEEE Trans. Image Process. 25(2), 829–839 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol 2, pp 1398–1402 (2003)

  52. Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives. Pac. J. Optim. 11(4), 619–644 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  54. Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)

    MathSciNet  MATH  Google Scholar 

  55. Hong, M., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)

    MathSciNet  MATH  Google Scholar 

  56. Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141(1–2), 349–382 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Sun, H. Iterative Adaptive Nonconvex Low-Rank Tensor Approximation to Image Restoration Based on ADMM. J Math Imaging Vis 61, 627–642 (2019). https://doi.org/10.1007/s10851-018-0867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0867-0

Keywords

Navigation