Skip to main content

Advertisement

Log in

Baseline data for automated acoustic monitoring of Orthoptera in a Mediterranean landscape, the Hymettos, Greece

  • ORIGINAL PAPER
  • Published:
Journal of Insect Conservation Aims and scope Submit manuscript

Abstract

Acoustic emissions of animals serve communicative purposes and most often contain species-specific and individual information exploitable to listeners, rendering bioacoustics a valuable tool for biodiversity monitoring. Recording bioacoustic signals allows reproducible species identification. There is a great need for increased use and further development of automated animal sound recording and identification to improve monitoring efficiency and accuracy for the benefit of conservation. Greece, with its high number of endemic species, represents a hotspot for European Biodiversity, including Orthopteran insects. Songs of many Orthoptera might be employed for the inventorying and monitoring of individual species and communities. We assessed the regional spatio-temporal composition of Orthoptera species at the Hymettos near Athens, which is a Natura 2000 site under constant threat due to the surrounding megacity. Within the framework of the EU Life Plus funded AmiBio project, we documented the Orthopteran species’ habitat characteristics, their co-occurrence and phenology. We found, in total, 20 species with seven to ten Orthoptera at locations characterised by diverse vegetation patterns of perennial herbs and bushes. For the purposes of implementation of an automated remote monitoring scheme, we identified sampling sites with high Orthopteran diversity, allowing the monitoring of all singing Orthoptera within single localities. By analysing sound depositories and adding recordings from new sample individuals, we established a song library as prerequisites for future automatic song detection. Based on our results, acoustic recording units have been placed at remote sites at the Hymettos. We discuss recommendations for further studies to fully employ the potential of automated acoustic monitoring of Orthoptera. A reliable assessment of singing Orthoptera needs recording units covering ultrasound. Due to high attenuation and absorbance by the vegetation, particularly of the high frequencies characterising Orthopteran songs, positioning of microphones at sites is critical: the microphone sensor network has to be an order of magnitude denser than for monitoring birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Antonatos S, Emmanouel N, Fantinou A, Tsagkarakis A, Anagnastopoulos A, Ntampakis D (2014) Seasonal population fluctuation and spatial distribution of Orthoptera in two grassland areas of Attica—Greece. J Nat Hist 48:661–674. doi:10.1080/00222933.2013.839844

    Article  Google Scholar 

  • Arianoutsou-Faraggitaki M, Diamantopoulos J (1985) Comparative phenology of five dominant plant species in maquis and phrygana ecosystems in Greece. Phyton 25:77–85

    Google Scholar 

  • Badenhausser I, Amouroux P, Lerin J, Bretagnolle V (2009) Acridid (Orthoptera: Acrididae) abundance in Western European Grasslands: sampling methodology and temporal fluctuations. J Appl Entomol 133:720–732

    Article  Google Scholar 

  • Báldi A, Kisbenedek T (1999) Orthopterans in small steppe patches: an investigation for the best-fit model of the species-area curve and evidences for their non-random distribution in the patches. Acta Oecol 20:125–132

    Article  Google Scholar 

  • Bardeli R, Wolff D, Kurth F, Koch M, Tauchert K-H, Frommolt K-H (2010) Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Patt Recog Lett 31:1524–1534

    Article  Google Scholar 

  • BIP (2013) Biodiversity Indicators Partnership. http://www.bipindicators.net/. Accessed October 2013

  • Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Andreas MA, Kirschel AN (2011) Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus. J Appl Ecol 48:758–767. doi:10.1111/j.1365-2664.2011.01993.x

    Article  Google Scholar 

  • Boucher N, Jinnai MA, Smolders A (2012a) Improvements in an automatic sound recognition system using multiple parameters to permit recognition system using multiple parameters to permit recognition with noisy and complex signals such as the dawn chorus. In: proceedings of the acoustics 2012 Nantes conference, 23–27 April 2012, Nantes, France: 2447–2453

  • Boucher N, Jinnai MA, Smolders A (2012b) A fully automatic acoustic monitor and survey system. In: proceedings of the acoustics 2012 Nantes conference, 23–27 April 2012, Nantes, France: 2455–2461

  • Brunner von Wattenwyl C (1878) Monographie der Phaneropteriden. Brockhaus, Wien

    Google Scholar 

  • Butchart SHM, Walpole M, Collen B, van Strien A, Scharleman JPW, Almond REA, Baillie JEM, Bornhard B, Brown C, Bruno J, Carpenter KE, Carr GM, Chanson J, Chenery AM, Csirke J, Davidson NC, Dentener F, Foster M, Galli A, Galloway JN, Genovesi P, Gregory RD, Hockings M, Kapos V, Lamarque JF, Leverington F, Loh J, McGeoch MA, McRae L, Minasyan A, Morcillo MH, Oldfield TEE, Pauly D, Quader S, Revenga C, Sauer JR, Skolnik B, Spear D, Stanwell-Smith D, Stuart SN, Symes A, Tierney M, Tyrell TD, Vié J-C, Watson R (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi:10.1126/science.1187512

    Article  PubMed  CAS  Google Scholar 

  • Catchpole CK, Slater PJB (1995) Bird song: biological themes and variations. Cambridge University Press, Cambridge

    Google Scholar 

  • Chapman RF, Joern A (1990) Biology of grasshoppers. Wiley, New York

    Google Scholar 

  • Chesmore ED, Ohya E (2004) Automated identification of field-recorded songs of four British grasshoppers using bioacoustic signal recognition. Bull Entomol Res 94:319–330. doi:10.1079/BER2004306

    Article  PubMed  CAS  Google Scholar 

  • Council Directive (1992) Official Journal of the European Communities, Council Directive 92/43/EEC 1992, No L 206/7. http://europa.eu.int/comm/environment/nature/habdir.htm. Accessed November 2013

  • Detzel P (1998) Die Heuschrecken Baden-Württembergs. Verlag Ulmer, Stuttgart

    Google Scholar 

  • Dietrich C, Palm G, Riede K, Schwenker F (2004) Classification of bioacoustic time series based on the combination of global and local decisions. Pattern Recognit 37:2293–2305

    Article  Google Scholar 

  • Digby A, Towsey M, Bell BD, Teal PD (2013) A practical comparison of manual and autonomous methods for acoustic monitoring. Methods Ecol Evol 4:675–683. doi:10.1111/2041-210X.12060

    Article  Google Scholar 

  • Dunn RR (2005) Modern insect extinctions, the neglected majority. Conserv Biol 19:1030–1036

    Article  Google Scholar 

  • Fartmann T, Krämer B, Stelzner F, Poniatowski D (2012) Orthoptera as ecological indicators for succession in steppe grassland. Ecol Indicat 30:337–344. doi:10.1016/j.ecolind.2012.03.002

    Article  Google Scholar 

  • Fischer FP, Schulz U, Schubert H, Knapp P, Schmöger M (1997) Quantitative assessment of grassland quality: acoustic determination of population sizes of orthopteran indicator species. Ecol Appl 7:909–920. doi:10.1890/1051-0761

    Article  Google Scholar 

  • Fristrup KM, Mennit D (2012) Bioacoustical monitoring in terrestrial environments. Acoust Today 3:16–24

    Article  Google Scholar 

  • Frommolt K-H, Tauchert K-H (2014) Applying bioacoustic methods for long-term monitoring of a nocturnal wetland bird. Ecol Informat 21:4–12

    Article  Google Scholar 

  • Frommolt K-H, Bardeli R, Kurth F, Clausen M (2006) The animal sound archive at the Humboldt-University of Berlin: current activities in conservation and improving access for bioacoustic research. Adv Bioacoust 2:139–144

    Google Scholar 

  • Frommolt K-H, Tauchert K-H, Koch M (2008) Advantages and disadvantages of acoustic monitoring of birds—realistic scenarios for automated bioacoustic monitoring in a densely populated region. In: Frommolt KH, Bardeli R, Clausen M (eds) Computational bioacoustics for assessing biodiversity. Proceedings of the international expert meeting on IT-based detection of bioacoustical patterns, December 7th until December 10th, 2007 at the International Academy for Nature Conservation (INA), Isle of Vilm, Germany. BfN-Skripten 234:83–92

  • Frommolt K-H, Hüppop O, Bardeli R, Hill R, Koch M, Tauchert K-H, Specht R (2012) Automatisierte Methoden der Erfassung von Rufen und Gesängen in der avifaunistischen Feldforschung. Vogelwarte 50:65–78

    Google Scholar 

  • Gardiner T, Hill J, Chesmore D (2005) Review of the methods frequently used to estimate the abundance of Orthoptera in grassland ecosystems. J Insect Conserv 9:151–173

    Article  Google Scholar 

  • Gaston K, O’Neill MA (2004) Automated species identification: why not? Phil Trans R Soc Lond B 359:655–667

    Article  Google Scholar 

  • GBIF (2010) Global diversity Information Facility. http://www.gbif.org/occurrence/search?TAXON_KEY=Orthoptera&COUNTRY=GR&offset=60. Assessed January 2010

  • Georghiou K, Arianoutsou M, Kazanis D, Economidou E, Legakis A, Valakos E (1995) Natura 2000 Clean Standard Data Form - NATURA 2000—GR3000006 (Ymittos—Aisthitiko Dasos Kaisarianis—Limni Vouliagmenis). University of Athens, The Ministry of the Environment, Physical Planning, and Public Works, and The Greek Biotope/Wetlands Center. http://natura2000.eea.europa.eu/Natura2000/SDFPublic.aspx?site=GR3000006. Accessed 15 September 2010

  • Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans. University of Chicago Press, Chicago

    Google Scholar 

  • Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850

    Article  Google Scholar 

  • Harz K (1969) Die Orthopteren Europas - The Orthoptera of Europe I. Dr. W, Junk, The Hague

  • Harz K (1975) Die Orthopteren Europas - The Orthoptera of Europe II. Dr. W. Junk, The Hague

    Book  Google Scholar 

  • Helfert B (1980) Die regulative Wirkung von Photoperiode und Temperatur auf den Lebenszyklus ökologisch unterschiedlicher Tettigoniiden-Arten (Orthoptera, Saltatoria). 1. Teil: Larvalentwicklung, Reproduktion und Lebensdauer der Parentalgeneration. Zool Jb Syst 107:159–182

    Google Scholar 

  • Heller K-G (1984) Zur Bioakustik und Phylogenie der Gattung Poecilimon (Orthoptera, Tettigoniidae, Phaneropterinae). Zool Jb Syst 111:69–117

    Google Scholar 

  • Heller K-G (1988) Bioakustik der europäischen Laubheuschrecken. Margraf, Weikersheim

    Google Scholar 

  • Heller K-G (2012) Fauna Europaea: Orthoptera. http://www.faunaeur.org/species_list.php. Accessed 16 November 2012

  • Huettmann F, Artukhin Y, Gilg O, Humphries G (2011) Predictions of 27 arctic pelagic seabird distributions using public environmental variables, assessed with colony data: a first digital IPY and GBIF open access synthesis platform. Mar Biodiv 41:141–179

    Article  Google Scholar 

  • Ikonomou-Amilli A (2007) The Biota of Hymettos. Activity Report—Attic landscape and environment, Botanical Museum EKPA, National and Kapodistrian University of Athens, Athens, Greece

  • Ingrisch S (1977) Beitrag zur Kenntnis der Larvenstadien mitteleuropäischer Laubheuschrecken. Z Angew Zool 64:459–501

    Google Scholar 

  • Ingrisch S, Köhler G (1998) Die Heuschrecken Mitteleuropas. Westarp, Magdeburg

    Google Scholar 

  • Ingrisch S, Riede K, Lampe K-H (2004) DORSA— virtuelles Museum deutscher Orthopterensammlungen online. Mitt Dtsch Ges Allg Angew Entomol 14:479–482

    Google Scholar 

  • Jahn O, van den Elzen R, Eschen V, Kostoulas T, Kuckuk A-S, Lehmann GUC, Marckmann U, Ntalampiras S, Peters G, Riede K, Schuchmann K-L, Weller A (2011) Grundlagenarbeit für die automatisierte Biodiversitätserfassung: die Rolle des ZFMK im AMIBIO-Projekt. AmiBio Newsletter, Deutsche Spezialausgabe Juni/2011: 3–4

  • Jahn O, Riede K, Grobe P, Lehmann GUC, Marckmann U, Schuchmann K-L, van den Elzen R (2012) From baseline data to improved habitat management practices -AmiBio furthers biodiversity conservation in the Hymettus mountains. AmiBio Newsletter, Special Issue April/2012: 5

  • Jones JPG (2011) Monitoring species abundance and distribution at the landscape scale. J Appl Ecol 48:9–13. doi:10.1111/j.1365-2664.2010.01917.x

    Article  Google Scholar 

  • Jurasinski G, Tezer V, Beierkuhnlein C (2009) Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity. Oecologia 159:15–26. doi:10.1007/s00442-008-1190-z

    Article  PubMed  Google Scholar 

  • Jurasinski G, Jentsch A, Retzer V, Beierkuhnlein C (2012) Detecting spatial patterns in species composition with multiple plot similarity coefficients and singularity measures. Ecography 35:73–88. doi:10.1111/j.1600-0587.2011.06718.x

    Article  Google Scholar 

  • Kati V, Willemse F (2001) The grasshoppers and crickets of the Dadia Forest Reserve (Thraki, Greece) with a new record to the Greek fauna: Paranocarodes chopardi Pechev 1965 (Orthoptera, Pamphagidae). Articulata 16:11–19

    Google Scholar 

  • Kati V, Dufrene M, Legakis A, Grill A, Lebrun P (2003) Conservation management for Orthoptera in the Dadia reserve, Greece. Biol Conserv 115:33–44

    Article  Google Scholar 

  • Kati V, Mani P, von Helversen O, Willemse F, Elsner N, Dimopoulos P (2006) Human land use threatens endemic wetland species: the case of Chorthippus lacustris (La Greca and Messina 1975) (Orthoptera: Acrididae) in Epirus, Greece. J Insect Conserv 10:65–74. doi:10.1007/s10841-005-2642-y

    Article  Google Scholar 

  • Kati V, Zografou K, Tzirkalli E, Chitos T, Willemse L (2012) Butterfly and grasshopper diversity patterns in humid Mediterranean grasslands: the roles of disturbance and environmental factors. J Insect Conserv 16:807–818. doi:10.1007/s10841-012-9467-2

    Article  Google Scholar 

  • Kenyeres Z, Rácz IA, Varga Z (2009) Endemism hot spots, core areas and disjunctions in European Orthoptera. Acta Zool Cracova B 52:189–211. doi:10.3409/azc.52b_1-2.189-211

    Google Scholar 

  • Köhler G (1998) Erfassung und Bewertung. In: Ingrisch S, Köhler G (eds) Die Heuschrecken Mitteleuropas. Westarp, Magdeburg

    Google Scholar 

  • Köhler G (2012) Heuschrecken im Spätherbst. Articulata 27:35–56

    Google Scholar 

  • Köhler G, Held M (2000) Eine erfolgreiche Zucht des Verkannten Grashüpfers, Chorthippus mollis (Charpentier), am Gemeinen Beifuß, Artemisia vulgaris L. Articulata 15:211–215

    Google Scholar 

  • Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  • Kratochwil A, Schwabe A (2001) Ökologie der Lebensgemeinschaften. Ulmer, Stuttgart

    Google Scholar 

  • Lampe K-H, Riede K, Ingrisch S (2005) Repatriation of knowledge about insects and types through the DORSA virtual museum (Digital Orthoptera Specimen Access). Beitr Entomol 55:477–484

    Google Scholar 

  • Lehmann AW (1998) Artbildung, akustische Kommunikation und sexuelle Selektion bei griechischen Laubheuschrecken der Poecilimon propinquus-Gruppe (Tettigonioidea, Phaneropteridae). Dissertation Universität Erlangen-Nürnberg, Germany

  • Lehmann GUC (2007) Density-dependent plasticity of sequential mate choice in a bushcricket. Austr J Zool 55:123–130

    Article  Google Scholar 

  • Lehmann GUC, Heller K-G (1998) Bushcricket song structure and predation by the acoustically orienting parasitoid fly Therobia leonidei (Diptera: Tachinidae: Ormiini). Behav Ecol Sociobiol 43:239–245

    Article  Google Scholar 

  • Lehmann GUC, Lehmann AW (2000a) Spermatophore characteristics in bushcrickets vary with parasitism and remating interval. Behav Ecol Sociobiol 47:393–399

    Article  Google Scholar 

  • Lehmann GUC, Lehmann AW (2000b) Female bushcrickets mated with parasitized males show rapid remating and reduced fecundity (Orthoptera: Phaneropteridae: Poecilimon mariannae). Naturwissenschaften 87:404–407

    Article  PubMed  CAS  Google Scholar 

  • Lehmann GUC, Lehmann AW (2006) Potential lifetime reproductive success of male bushcrickets parasitized by a phonotactic fly. Anim Behav 71:1103–1110

    Article  Google Scholar 

  • Lehmann GUC, Lehmann AW (2008a) Bushcricket song as a clue for spermatophore size? Behav Ecol Sociobiol 62:569–578

    Article  Google Scholar 

  • Lehmann GUC, Lehmann AW (2008b) Variation in body size among populations of the bushcricket Poecilimon thessalicus (Orthoptera: Phaneropteridae): an ecological adaptation? J Orthopt Res 17:165–169

    Article  Google Scholar 

  • Lehmann GUC, Lehmann AW (2009) Condition-dependent spermatophore size is correlated with male’s age in a bushcricket (Orthoptera: Phaneropteridae). Biol J Linn Soc 96:354–360

    Article  Google Scholar 

  • Lehmann GUC, Heller K-G, Lehmann AW (2001) Male bushcrickets favoured by parasitoid flies when acoustically more attractive for conspecific females (Orthoptera: Phaneropteridae/Diptera: Tachinidae). Entomol Gen 25:135–140

    Article  Google Scholar 

  • Lehmann AW, Willemse F, Heller K-G (2006) Poecilimon gerlindae spec. nov.—a new bushcricket of the Poecilimon propinquus-group (Orthoptera: Phaneropteridae) from Greece. Articulata 21:109–119

    Google Scholar 

  • Lehmann GUC, Berger S, Strauß J, Lehmann AW, Pflüger H-J (2010) The auditory system of non-calling grasshoppers (Melanoplinae: Podismini) and the evolutionary regression of their tympanal ears. J Comp Phys A 196:807–816

    Article  Google Scholar 

  • Leqing Z, Zhen Z (2012) Insect sound recognition based on SBC and HMM. 2010 In: international conference on intelligent computation technology and automation 2: 544–548. doi: 10.1109/ICICTA.2010.264

  • Lockwood JA (1997) Grasshopper population dynamics: a prairie perspective. In: Gangwere SK, Muralirangan MC, Muralirangan M (eds) The Bionomics of Grasshoppers, Katydids and their Kin. CAB International, Wallingford, pp 103–127

    Google Scholar 

  • Maas S, Detzel P, Staudt A (2002) Gefährdungsanalyse der Heuschrecken Deutschlands. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Marini L, Bommarco R, Fontana P, Battisti A (2010) Disentangling effects of habitat diversity and area on orthopteran species with contrasting mobility. Biol Conserv 143:2164–2171. doi:10.1016/j.biocon.2010.05.029

    Article  Google Scholar 

  • Marques TA, Thomas L, Martin SW, Mellinger DK, Ward JA, Moretti DJ, Harris D, Tyack PL (2013) Estimating animal population density using passive acoustics. Biol Rev 88:287–309. doi:10.1111/brv.12001

    Article  PubMed  PubMed Central  Google Scholar 

  • McCartney J, Potter MA, Robertson AW, Telscher K, Lehmann G, Lehmann A, von Helversen D, Reinhold K, Achmann R, Heller K-G (2008) Understanding nuptial gift size in bush-crickets: an analysis of the genus Poecilimon (Tettigoniidae; Orthoptera). J Orthopt Res 17:231–242

    Article  Google Scholar 

  • McCartney J, Lehmann AW, Lehmann GUC (2010) Lifetime spermatophore investment in natural populations of two closely related bush-cricket species (Orthoptera: Tettigoniidae: Poecilimon). Behaviour 147:285–298

    Article  Google Scholar 

  • Meyer CF, Aguiar LMS, Aguirre LF, Baumgarten J, Clarke FM, Cosson J-F, Villegas SE, Fahr J, Faria D, Furey N, Henry M, Hodgkison R, Jenkins RKB, Jung KG, Kingston T, Kunz TH, MacSwiney-Gonzalez MC, Moya I, Pons J-M, Racey PA, Rex K, Sampaio EM, Stoner KE, Voigt CC, von Staden D, Weise CD, Kalko EK (2010) Long-term monitoring of tropical bats for anthropogenic impact assessment: gauging the statistical power to detect population change. Biol Conserv 143:2797–2807

    Article  Google Scholar 

  • Nagy A, Sólymos P, Rácz IA (2007) A test on the effectiveness and selectivity of three sampling methods frequently used in orthopterological field studies. Entomol Fenn 18:149–159

    Google Scholar 

  • Nufio CR, McClenahan JL, Thurston EG (2009) Determining the effects of habitat fragment area on grasshopper species density and richness: a comparison of proportional and uniform sampling methods. Insect Conserv Div 2:295–304

    Article  Google Scholar 

  • Obrist MK, Pavan G, Sueur J, Riede K, Llusia D, Márquez R (2010) Chapter 5 - Bioacoustics approaches in biodiversity inventories. In: Manual on field recording techniques and protocols for All Taxa Biodiversity Inventories and Monitoring. ABC Taxa 8(1): 68–99. http://www.abctaxa.be/volumes/volume-8-manual-atbi

  • Oschmann M (1969) Bestimmungstabellen für die Larven mitteldeutscher Orthopteren. Dtsch Entomol Z 16:277–291. doi:10.1002/mmnd.19690160121

    Article  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    Article  CAS  Google Scholar 

  • Potamitis I (2014) Automatic classification of a taxon-rich community recorded in the wild. PLoS One 9(5):e96936

    Article  PubMed  PubMed Central  Google Scholar 

  • Potamitis I, Ntalampiras S, Jahn O, Riede K (2014) Automatic bird sound detection in long real-field recordings: applications and tools. Appl Acoust 80:1–9

    Article  Google Scholar 

  • Pulmedi U, Valis D (2006) Paths of Hymettos. L’Atelier EPE, Athens

    Google Scholar 

  • Ragge DR, Reynolds WJ (1998) The songs of the grasshoppers and crickets of Western Europe. Harley Books, Colchester

    Google Scholar 

  • Riede K (1993) Monitoring biodiversity: analysis of Amazonian rainforest sounds. Ambio 22:546–548

    Google Scholar 

  • Riede K (1998) Acoustic monitoring of Orthoptera and its potential for conservation. J Insect Conserv 2:217–223

    Article  Google Scholar 

  • Riede K, Nischk F, Dietrich C, Thiel C, Schwenker F (2006) Automated annotation of Orthoptera songs: first results from analysing the DORSA sound repository. J Orthopt Res 15:105–113

    Article  Google Scholar 

  • Roesti C, Keist B (2009) Die Stimmen der Heuschrecken. Haupt Verlag, Bern

    Google Scholar 

  • Römer H (1993) Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Phil Trans R Soc Lond B 340:179–185

    Article  Google Scholar 

  • Ryszkowski L, Karg J, Margarit G, Paoletti MG, Zlotin R (1993) Above-ground insect biomass in agricultural landscape of Europe. In: Bunce RGH, Ryszkowski L, Paoletti MG (eds) Landscape ecology and agroecosystems. Lewis, Boca Raton, pp 71–82

    Google Scholar 

  • Samways MJ (1997) Conservation biology of Orthoptera. In: Gangwere SK, Muralirangan MC, Muralirangan M (eds) The bionomics of grasshoppers. Katydids and their Kin, CAB International, Wallingford, pp 481–496

    Google Scholar 

  • Samways MJ, Lockwood JA (1998) Orthoptera conservation: pests and paradoxes. J Insect Conserv 2:143–149

    Article  Google Scholar 

  • Schirmel J, Buchholz S, Fartmann T (2010) Is pitfall trapping a valuable sampling method for grassland Orthoptera? J Insect Conserv 14:289–296

    Article  Google Scholar 

  • Schlumpfrecht H, Waeber G (2003) Heuschrecken in Bayern. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Schultner E, Blanchet E, Pagès C, Lehmann GUC, Lecoq M (2012) Development, reproductive capacity and diet of the Mediterranean grasshopper Arcyptera brevipennis vicheti Harz 1975 (Orthoptera: Caelifera: Acrididae: Gomphocerinae). Ann Soc Entomol Fr 48:299–307

    Google Scholar 

  • SEBI (2007) “Streamlining European Biodiversity Indicators” initiative. http://www.eea.europa.eu/publications/technical_report_2007_11. Accessed November 2013

  • Szijj J (1992) Ökologie der Heuschrecken in den Flußmündungen Griechenlands im Zusammenhang mit der landschaftsökologischen Entwicklung (Orthoptera, Saltatoria). Dtsch entomol Z 39:1–53. doi:10.1002/mmnd.19920390102

    Article  Google Scholar 

  • Thorens P (1994) Observations phénologiques sur Chorthippus mollis (Charp.) (Orthoptera, Acrididae) au pied sud du Jura. Mitt Schweiz Entomol Ges 67:277–287

    Google Scholar 

  • Towsey M, Planitz B, Nantes A, Wimmer J, Roe P (2012) A toolbox for animal call recognition. Bioacoustics 21:107–125

    Article  Google Scholar 

  • Tuomisto H (2010a) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2–22

    Article  Google Scholar 

  • Tuomisto H (2010b) A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33:23–45

    Article  Google Scholar 

  • UNEP/CBD (2010) United Nations Environmental Program, Convention on Biological Diversity/COP/Decision X/2 Annex - Strategic plan for biodiversity 2011-2020 and the Aichi biodiversity targets “Living in harmony with nature”. http://www.cbd.int/decision/cop/?id=12268. Accessed November 2013

  • Uvarov B (1977) Grasshoppers and locusts. A handbook of general Acridology. Volume 2 Behaviour, Ecology, Biogeography, Population dynamics. Centre for Overseas Pest Research, University Press, Cambridge

  • Willemse F (1982) A survey of the Greek species of Poecilimon Fischer (Orthoptera, Ensifera, Phaneropterinae). Tijdschr Entomol 125:155–203

    Google Scholar 

  • Willemse F (1984) Catalogue of the Orthoptera of Greece. Fauna Graeciae I. Hellenic Zoological Society, Athens

    Google Scholar 

  • Willemse F (1985a) Supplementary notes on the Orthoptera of Greece. Fauna Graeciae Ia. Hellenic Zoological Society, Athens

    Google Scholar 

  • Willemse F (1985b) A key to the Orthoptera species of Greece. Fauna Graeciae II. Hellenic Zoological Society, Athens

    Google Scholar 

  • Willemse F, Heller K-G (1992) Notes on systematics of Greek species of Poecilimon Fischer, 1853 (Orthoptera: Phaneropterinae). Tijdschr Entomol 135:299–315

    Google Scholar 

  • Willemse F, Willemse L (2008) An annotated checklist of the Orthoptera-Saltatoria from Greece including an updated bibliography. Articulata Beih 13:1–91

    Google Scholar 

  • Willemse F, von Helversen O, Odé B (2009) A review of Chorthippus species with angled pronotal lateral keels from Greece with special reference to transitional populations between some Peloponnesean taxa (Orthoptera, Acrididae). Zool Med Leiden 83:319–507

    Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453. doi:10.1016/S0169-5347(01)02205-4

    Article  Google Scholar 

  • Zimmer WMX (2011) Passive acoustic monitoring of cetaceans. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zografou K, Sfenthourakis S, Pullin A, Kati V (2009) On the surrogate value of red-listed butterflies for butterflies and grasshoppers: a case study in Grammos site of Natura 2000, Greece. J Insect Conserv 13:505–514

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the LIFE Program AmiBio “Automatic Acoustic Monitoring and Inventorying of Biodiversity”, Grant LIFE 08 NAT/GR/000539. We thank Olaf Jahn, who was responsible for coordinating the AmiBio project, Ulrich Marckmann for help in the field, the director of the SPAY program in Athens for hospitality and support during our field studies. Paul Grant was a helpful companion on a cursorial excursion in November 2011. Finally, we thank Michael Reichert for improving the English. The final version was profited by helpful comments of two anonymous referees and the editor John Dover.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerlind U. C. Lehmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, G.U.C., Frommolt, KH., Lehmann, A.W. et al. Baseline data for automated acoustic monitoring of Orthoptera in a Mediterranean landscape, the Hymettos, Greece. J Insect Conserv 18, 909–925 (2014). https://doi.org/10.1007/s10841-014-9700-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10841-014-9700-2

Keywords

Navigation