Skip to main content
Log in

On the effects of the fix geometric constraint in 2D profiles on the reusability of parametric 3D CAD models

  • Published:
International Journal of Technology and Design Education Aims and scope Submit manuscript

Abstract

In order to be reusable, history-based feature-based parametric CAD models must reliably allow for modifications while maintaining their original design intent. In this paper, we demonstrate that relations that fix the location of geometric entities relative to the reference system produce inflexible profiles that reduce model reusability. We present the results of an experiment where novice students and expert CAD users performed a series of modifications in different versions of the same 2D profile, each defined with an increasingly higher number of fix geometric constraints. Results show that the amount of fix constraints in a 2D profile correlates with the time required to complete reusability tasks, i.e., the higher the number of fix constraints in a 2D profile, the less flexible and adaptable the profile becomes to changes. In addition, a pilot software tool to automatically track this type of constraints was developed and tested. Results suggest that the detection of fix constraint overuse may result in a new metric to assess poor quality models with low reusability. The tool provides immediate feedback for preventing high semantic level quality errors, and assistance to CAD users. Finally, suggestions are introduced on how to convert fix constraints in 2D profiles into a negative metric of 3D model quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ait-Aoudia, S., & Foufou, S. (2010). A 2D geometric constraint solver using a graph reduction method. Advances in Engineering Software, 41(10), 1187–1194. https://doi.org/10.1016/j.advengsoft.2010.07.008.

    Article  Google Scholar 

  • Ault, H. K. (1999). Using geometric constraints to capture design intent. Journal for Geometry and Graphics, 3(1), 39–45.

    Google Scholar 

  • Ault, H. K. (2004). Over-constrained, under-constrained or just right? Goldilocks evaluates DOF of sketched profiles. Paper presented at American Society for Engineering Education, 59th annual midyear meeting past, present and future? Williamsburg, November 21–23.

  • Ault, H. K., Bu, L., & Liu, K. (2014). Solid modeling strategies-analyzing student choices. Paper presented at proceedings of the 121st ASEE annual conference and exposition, Indianapolis, June 15–18.

  • Ault, H. K., & Fraser, A. (2013). A comparison of manual vs. online grading for solid models. Paper presented at 120th ASEE annual conference and exposition, Atlanta, GA, June 23–26, 2013, Paper ID #7233.

  • Barbero, B. R., Pedrosa, C. M., & Samperio, R. Z. (2016). Learning CAD at university through summaries of the rules of design intent. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-016-9358-z.

    Google Scholar 

  • Bodein, Y., Bertrand, R., & Caillaud, E. (2014). Explicit reference modeling methodology in parametric CAD system. Computers in Industry, 65(1), 136–147. https://doi.org/10.1016/j.compind.2013.08.004.

    Article  Google Scholar 

  • Bouma, W., Fudos, I., Hoffmann, C., Cai, J., & Paige, R. (1995). Geometric constraint solver. Computer-Aided Design, 27(6), 487–501. https://doi.org/10.1016/0010-4485(94)00013-4.

    Article  Google Scholar 

  • Briggs, J. C., Hepworth, A. I., Stone, B. R., Cobum, J. Q., Jensen, C. G., & Red, E. (2015). Integrated, synchronous multi-user design and analysis. Journal of Computing and Information Science in Engineering, 15(3), 031002. https://doi.org/10.1115/1.4029801.

    Article  Google Scholar 

  • Buckley, J., Seery, N., & Canty, D. (2017). Heuristics and CAD modelling: An examination of student behaviour during problem solving episodes within CAD modelling activities. International Journal of Technology and Design Education. https://doi.org/10.1007/s10798-017-9423-2.

    Google Scholar 

  • Camba, J. D., & Contero, M. (2015). Assessing the impact of geometric design intent annotations on parametric model alteration activities. Computers in Industry, 71, 35–45. https://doi.org/10.1016/j.compind.2015.03.006.

    Article  Google Scholar 

  • Camba, J. D., Contero, M., & Company, P. (2016). Parametric CAD modeling: An analysis of strategies for design reusability. Computer-Aided Design, 74, 18–31. https://doi.org/10.1016/j.cad.2016.01.003.

    Article  Google Scholar 

  • Camba, J. D., Contero, M., & Company, P. (2017). CAD reusability and the role of modeling information in the MBE context. Model-based enterprise summit 2017. National Institute of Standards and Technology (NIST), Gaithersburg, MD, April 3–7. MBE17-020. https://www.nist.gov/file/361581.

  • Cheng, Z., & Ma, Y. (2017). A functional feature modeling method. Advanced Engineering Informatics, 33, 1–15. https://doi.org/10.1016/j.aei.2017.04.003.

    Article  Google Scholar 

  • Cheng, Z., Xie, Y., & Ma, Y. (2018). Graph centrality analysis of feature dependencies to unveil modeling intents. Computer-Aided Design and Applications. https://doi.org/10.1080/16864360.2018.1441236.

    Google Scholar 

  • Chester, I. (2007). Teaching for CAD expertise. International Journal of Technology and Design Education, 17, 23–35. https://doi.org/10.1007/s10798-006-9015-z.

    Article  Google Scholar 

  • Company, P., Contero, M., Otey, J., & Plumed, R. (2015). Approach for developing coordinated rubrics to convey quality criteria in CAD training. Computer-Aided Design, 63, 101–117. https://doi.org/10.1016/j.cad.2014.10.00.

    Article  Google Scholar 

  • Company, P., & González-Lluch, C. (2013). CAD 3D con SolidWorks ® Tomo I: Diseño básico. Publicacions de la Universitat Jaume I. (Colección Sapientia, Núm. 86). http://cad3dconsolidworks.uji.es.

  • Contero, M., Company, P., Vila, C., & Aleixos, N. (2002). Product data quality and collaborative engineering. IEEE Computer Graphics Applications, 22(3), 32–42. https://doi.org/10.1109/MCG.2002.999786.

    Article  Google Scholar 

  • Dixon, B. M., & Dannenhoffer, J. F., III. (2014). Geometric sketch constraint solving with user feedback. Journal of Aerospace Information Systems, 11(5), 316–325. https://doi.org/10.2514/1.I010110.

    Article  Google Scholar 

  • Fudos, I., & Hoffmann, C. M. (1997). A graph-constructive approach to solving systems of geometric constraints. ACM Transactions on Graphics, 16(2), 179–216. https://doi.org/10.1145/248210.248223.

    Article  Google Scholar 

  • Ge, J. X., Chou, S. C., & Gao, X. S. (1999). Geometric constraint satisfaction using optimization methods. Computer-Aided Design, 31(14), 867–879. https://doi.org/10.1016/S0010-4485(99)00074-3.

    Article  Google Scholar 

  • González-Lluch, C., Company, P., Contero, M., Camba, J. D., & Colom, J. (2017a). A case study on the use of model quality testing tools for the assessment of MCAD models and drawings. International Journal of Engineering Education, 33(5), 1643–1653.

    Google Scholar 

  • González-Lluch, C., Company, P., Contero, M., Camba, J. D., & Plumed, R. (2017b). A survey on 3D CAD model quality assurance and testing tools. Computer-Aided Design, 83, 64–79. https://doi.org/10.1016/j.cad.2016.10.003.

    Article  Google Scholar 

  • Hamade, R. F. (2009). Profiling the desirable CAD trainee: Technical background, personality attributes, and learning preferences. Journal of Mechanical Design, 131(12), 121009–121019. https://doi.org/10.1115/1.4000455.

    Article  Google Scholar 

  • Hekman, K. A., & Gordon, M. T. (2013). Automated grading of first year student CAD work. Paper presented at the 120th ASEE annual conference and exposition 2013, Atlanta, GA, June 23–26. Paper ID #6379.

  • Hepworth, A., Tew, K., Trent, M., Ricks, R., Jensen, C. G., & Red, E. R. (2014). Model consistency and conflict resolution with data preservation in multi-user computer aided design. Journal of Computing and Information Science in Engineering, 14(2), 021008. https://doi.org/10.1115/1.4026553.

    Article  Google Scholar 

  • Jackson, C., & Buxton, M. (2007). The design reuse benchmark report: Seizing the opportunity to shorten product development. Boston: Aberdeen Group.

    Google Scholar 

  • Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., & Vilaplana-Pastó, J. (2003). Transforming an under-constrained geometric constraint problem into a well-constrained one. Paper presented at proceedings of ACM SM03, Seatle, June 16–20.

  • Kirstukas, S. J. (2016). Development and evaluation of a computer program to assess student CAD models. Paper presented at ASEE annual conference and exposition, New Orleans, June 26.

  • Kramer, G. (1991). Using degrees of freedom analysis to solve geometric constraint systems. Paper presented at proceedings of the first ACM symposium on solid modeling foundations and CAD/CAM applications 1991, Austin, June 05–07.

  • Kwon, S., Kim, B. C., Mun, D., & Han, S. (2015). Graph-based simplification of feature-based three-dimensional computer-aided design models for preserving connectivity. Journal of Computing and Information Science in Engineering, 15(3), 031010. https://doi.org/10.1115/1.4030748.

    Article  Google Scholar 

  • Leea, J. Y., & Kimb, K. (1998). A 2-D geometric constraint solver using DOF-based graph reduction. Computer-Aided Design, 30(11), 883–896. https://doi.org/10.1016/S0010-4485(98)00045-1.

    Article  Google Scholar 

  • Mata Burgarolas, N. (1997). Solving incidence and tangency constraints in 2D. Technical report LSI-97-3R, Departament LiSI, Universitat Politècnica de Catalunya.

  • Petrina, S. (2003). Two cultures of technical courses and discourses: The case of computer aided design. International Journal of Technology and Design Education, 13, 47–73.

    Article  Google Scholar 

  • Race, P. (2001). The lecturers toolkit—A practical guide to learning, teaching and assessment. Great Britain: Glasgow.

    Google Scholar 

  • Red, E., French, D., Jensen, G., Walker, S. S., & Madsen, P. (2013). Emerging design methods and tools in collaborative product development. Journal of Computing and Information Science in Engineering, 13(3), 031001. https://doi.org/10.1115/1.4023917.

    Article  Google Scholar 

  • Robertson, B. F., Walther, J., & Radcliffe, D. (2007). Creativity and the use of CAD tools: Lessons for engineering design education from industry. Journal of Mechanical Design, 129(7), 753–760. https://doi.org/10.1115/1.2722329.

    Article  Google Scholar 

  • Stone, B., Salmon, J., Eves, K., Killian, M., Wright, L., Oldroyd, J., et al. (2017). A multi-user computer-aided design competition: Experimental findings and analysis of team-member dynamics. Journal of Computing and Information Science in Engineering, 17(3), 031003. https://doi.org/10.1115/1.4035674.

    Article  Google Scholar 

  • Summers, J. D., & Shah, J. J. (2010). Mechanical engineering design complexity metrics: Size, coupling, and solvability. Journal of Mechanical Design, 132(2), 21004–21015. https://doi.org/10.1115/1.4000759.

    Article  Google Scholar 

  • Szewczyk, J. (2003). Difficulties with the novices’ comprehension of the computer-aided design (CAD) interface: Understanding visual representations of CAD tools. Journal of Engineering Design, 14(2), 169–185. https://doi.org/10.1080/0954482031000091491.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Raquel Plumed for her support in the statistical analysis. This work has been partially funded by Grant UJI-A02017-15 (Universitat Jaume I) and DPI2017-84526-R (MINECO/AEI/FEDER, UE), project CAL-MBE. The authors also wish to thank the editor and reviewers for their valuable comments and suggestions that helped us improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen González-Lluch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Lluch, C., Company, P., Contero, M. et al. On the effects of the fix geometric constraint in 2D profiles on the reusability of parametric 3D CAD models. Int J Technol Des Educ 29, 821–841 (2019). https://doi.org/10.1007/s10798-018-9458-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10798-018-9458-z

Keywords

Navigation