Skip to main content
Log in

Using matrices of specifications, factors and concepts to assist design-engineering students

  • Published:
International Journal of Technology and Design Education Aims and scope Submit manuscript

Abstract

In this work a matrix-type tool is used to assist design-engineering students to develop product design projects. The ‘specifications-factors-concepts matrix’ or SFCM is proposed as a specific tool to organize and relate product requirements, design factors and projected solutions. Taking into account the early stages of the design process, two types of projects that are denominated, respectively, with imposed specifications and with derived specifications, are differentiated. In each case, SFCM conveniently integrates the main contents of the project in order to carry out a comprehensive study of the design problem. SFCM was implemented in higher education, particularly in Degree of Engineering of Industrial Design and Product Development. The design of a hydraulic front brake handle for motorcycles (imposed specifications approach) and a waking up enabler for children (derived specifications approach), were proposed. The process of creation as well as the resulting matrix is shown in each case. In addition, the development and results of the experience are exposed. Students assessed by means of a survey how it helped them to develop the main tasks involved in the design projects giving, globally, a positive opinion about its usefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akao, Y. (1990). Quality function deployment. Cambridge, MA: Productivity Press.

    Google Scholar 

  • Altshuller, G., & Shulyak, L. (1998). 40 principles: TRIZ keys to technical innovation. Worcester, MA: Technical Innovation Center.

    Google Scholar 

  • Barba, E. (1993). Excelencia en el proceso de desarrollo de nuevos productos. Barcelona: EADA Gestión.

    Google Scholar 

  • Björnfot, A., & Stehn, L. (2007). A design structural matrix approach displaying structural and assembly requirements in construction: A timer case study. Journal of Engineering Design, 18(2), 113–124. doi:10.1080/09544820600664721.

    Article  Google Scholar 

  • Boothroyd, G., Dewhurst, P., & Knight, W. A. (2011). Product design for manufacture and assembly (3rd ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Bovea, M. D., & Wang, B. (2004). Green quality function deployment: A methodology for integrating customer, cost and environmental requirements in product design. International Journal Environmental Conscious Design Manufacturing, 12(4), 9–19.

    Google Scholar 

  • Bronet, F., Eglash, R., Gabriele, G., Hess, D., & Kagan, L. (2003). Product design and innovation: Evolution of an interdisciplinary design curriculum. International Journal of Engineering Education, 19(1), 183–191.

    Google Scholar 

  • Chua, K. J., Yang, W. M., & Leo, H. L. (2014). Enhanced and conventional project-based learning in an engineering design module. International Journal of Technology and Design Education, 24, 437–458. doi:10.1007/s10798-013-9255-7.

    Article  Google Scholar 

  • Coelho, D. A. (2011). Industrial design—New frontiers. Rijeka: InTech.

    Book  Google Scholar 

  • Council Directive 93/14/EEC of 5 April 1993 on the braking of two or three wheeled motor vehicles (amended by Commission Directive 2006/27/EC of 3 March 2006).

  • Cross, N. (1984). Developments in Design Methodology. Chichester: Wiley.

    Google Scholar 

  • Deubzer, F., & Lindermann, U. (2008). Functional modelling for design synthesis using MDM methodology. In 10th international design structure matrix conference. Stockholm: Sweden.

  • Dorst, K. (2006). Design problems and design paradoxes. Cambridge, MA: MIT Press.

    Google Scholar 

  • Gustafsson, A., Ekdahl, F., & Bergman, B. (1999). Conjoint analysis: A useful tool in the design process. Total Quality Management, 10(3), 327–343.

    Article  Google Scholar 

  • Jeon, K. M., Jarret, O. S., & Ghim, H. D. (2014). Project-based learning in engineering education: Is it motivational? International Journal of Engineering Education, 30(2), 438–448.

    Google Scholar 

  • Kano, S. (2001). Life cycle and creation of attractive quality. In Proceedings of the 4th international quality management and organisational development conference (pp. 18–36). Linköping, Sweden.

  • Lewis, W. P., & Bonollo, E. (2002). An analysis of professional skills in design: Implications for education and research. Design Studies, 23, 385–406.

    Article  Google Scholar 

  • Liebenberg, L., & Mathews, E. H. (2012). Integrating innovation skills in an introductory engineering design-build course. International Journal of Technology and Design Education, 22, 99–113. doi:10.1007/s10798-010-9137-1.

    Article  Google Scholar 

  • Liu, S., & Boyle, I. M. (2009). Engineering design: Perspectives, challenges and recent advances. Journal of Engineering Design, 20(1), 7–19. doi:10.1080/09544820802670914.

    Article  Google Scholar 

  • Lone, G., & Sanjeev, S. (2007). Application of conjoint analysis in product design. International Journal of Industrial Engineering—Theory Applications and Practice, 14(2), 141–150.

    Google Scholar 

  • Maguire, M. (2001). Methods to support human centered design. International Journal of Human Computer Studies, 55, 587–634.

    Article  Google Scholar 

  • Maldonado, T. (1993). El Diseño Industrial Reconsiderado (2nd ed.). Barcelona: Gustavo Gili, S.A.

    Google Scholar 

  • Manchado, E. (2013). Diseño y aplicación de sistemas de retículas en la realización de proyectos de desarrollo de producto. Tesis Doctoral. Universidad de Zaragoza, España.

  • Miao, L., Xinguo, M., & Maokuan, Z. (2013). A framework of product innovative design process based on TRIZ and patent circumvention. Journal of Engineering Design, 24(12), 830–848. doi:10.1080/09544828.2013.856388.

    Article  Google Scholar 

  • Milton, A., & Rodgers, P. (2013). Research methods for product design. London: Laurence King Publishing Ltd.

    Google Scholar 

  • Moalosi, R., Popovic, V., & Hickling-Hudson, A. (2010). Culture-oriented product design. International Journal of Technology and Design Education, 20, 175–190.

    Article  Google Scholar 

  • Munari, B. (1983). ¿Cómo nacen los objetos? Apuntes para una metodología proyectual. Barcelona: Gustavo Gili, S.A.

    Google Scholar 

  • Otto, K., & Wood, K. (2001). Product design techniques in reverse engineering and new product development. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Page, A., Porcar, R., Duch, M. J., Solaz, J., & Solaz, V. (2001). Nuevas técnicas para el desarrollo de productos innovadores orientados al usuario. Valencia: Instituto de Biomecánica de Valencia.

    Google Scholar 

  • Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (2007). Engineering design: A systematic approach (3rd ed.). London: Springer.

    Book  Google Scholar 

  • Patrick, J. (1997). How to develop successful new products. Chicago: NTC Business Books.

    Google Scholar 

  • Pérez, C. (2008). La Función como Principio del Diseño. Colombia: Pereira.

    Google Scholar 

  • Pugh, S. (1990). Total design. Integrated methods for successful product engineering. Wokingham: Addison-Wesley Pub. Co.

    Google Scholar 

  • Ramírez, R. (2012). Guía de Buenas Prácticas de Diseño. Herramientas para la gestión del diseño y desarrollo de productos. San Martín: Inst. Nacional de Tecnología Industrial—INTI.

    Google Scholar 

  • Saaty, T. (1982). How to structure and make choices in complex problems. Human Systems Management, 3(4), 255–261.

    Google Scholar 

  • Santolaya, J. L., Serrano, A., & Biedermann, A. M. (2014). Creation of specifications and factors matrices in design projects. In Reflections on the design for everyday life (pp. 33–44). Mexico D.F.: Prado S.A. de C.V.

  • Serrano, A., Hernández, M., Pérez, E., & Biel, P. (2013a). Trabajo por módulos: un modelo de aprendizaje interdisciplinar y colaborativo en el Grado en Ingeniería en Diseño Industrial y Desarrollo de Producto. REDU, Revista de Docencia Universitaria, 11, 197–220.

    Article  Google Scholar 

  • Serrano, A., Hernández, M., Pérez, E., Biel, P., Rodrigo, C., Gambau, L., et al. (2013b). Desarrollo de la competencia de síntesis en los trabajos de módulo del grado en ingeniería de diseño industrial y desarrollo de producto. Girona: IV Congreso Internacional UNIVEST.

    Google Scholar 

  • Ulrich, K., & Eppinger, S. (2000). Product design and development. Boston, MA: Irwin McGraw-Hill.

    Google Scholar 

  • Yang, M. Y., You, M., & Chen, F Ch. (2005). Competences and qualifications for industrial design jobs: Implications for design practice, education and student career guidance. Design Studies, 26, 155–189.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Santolaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santolaya, J.L., Biedermann, A. & Serrano, A. Using matrices of specifications, factors and concepts to assist design-engineering students. Int J Technol Des Educ 28, 771–786 (2018). https://doi.org/10.1007/s10798-017-9403-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10798-017-9403-6

Keywords

Navigation