Skip to main content

Advertisement

Log in

Luteolin and Apigenin Attenuate LPS-Induced Astrocyte Activation and Cytokine Production by Targeting MAPK, STAT3, and NF-κB Signaling Pathways

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Astrocytes release biologically active substances that cause inflammation in neurodegenerative diseases. The present study investigated the effects of two flavonoids (apigenin and luteolin) on the production of IL-31 and IL-33 in lipopolysaccharide (LPS)-activated astrocytes. Cell viability was investigated using EZ-Cytox assay, mRNA expressions of IL-31 and IL-33 were analyzed by RT-PCR, protein expressions were analyzed by western blot, and cytokine secretion was analyzed by ELISA. Apigenin and luteolin prevented astrocyte activation and inhibited mRNA and protein expression and secretion of IL-31 and IL-33 in the LPS-treated astrocytes. Apigenin’s suppression of ERK, NF-κB, and STAT3 activations was responsible for the inhibition of IL-31 and IL-33, while luteolin’s suppression of JNK, p38, ERK, NF-κB, and STAT3 activations was responsible for the inhibition of IL-31 in the astrocytes. Also, luteolin’s suppression of ERK, NF-κB, and STAT3 activations inhibited IL-33 production in the activated astrocytes. In addition, apigenin and luteolin also prevented the translocation of activated STAT3 and NF-κB to the nucleus of the activated astrocytes and subsequently affected their DNA binding activities. The results suggest that apigenin and luteolin may have potentials as neuroprotective agents for the treatment of diseases involving astrocyte activation and detrimental production of IL-31 and IL-33.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The data used to support the findings of the study is included in the article, and the data are available from the corresponding author upon request.

References

  1. Eroglu, C., and B.A. Barres. 2010. Regulation of synaptic connectivity by glia. Nature 468: 223–231.

    Article  CAS  Google Scholar 

  2. Rowitch, D.H., and A.R. Kriegstein. 2010. Developmental genetics of vertebrate glial–cell specification. Nature 468: 214–222.

    Article  CAS  Google Scholar 

  3. Deng, Y., D. Xie, M. Fang, G. Zhu, C. Chen, H. Zeng, J. Lu, and K. Charanjit. 2014. Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. PLoS One 9: e87420.

    Article  Google Scholar 

  4. González-Reyes, R.E., M.O. Nava-Mesa, K. Vargas-Sánchez, D. Ariza-Salamanca, and L. Mora-Muñoz. 2017. Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Frontiers in Molecular Neuroscience 10: 427.

    Article  Google Scholar 

  5. Sofroniew, M.V., and H.V. Vinters. 2010. Astrocytes: biology and pathology. Acta Neuropathologica 119: 7–35.

    Article  Google Scholar 

  6. Tsuda, M. 2017. Spinal dorsal horn astrocytes: new players in chronic itch. Allergology international : official journal of the Japanese Society of Allergology 66: 31–35.

    Article  CAS  Google Scholar 

  7. Dillon, S.R., C. Sprecher, A. Hammond, J. Bilsborough, M. Rosenfeld-Franklin, S.R. Presnell, H.S. Haugen, M. Maurer, B. Harder, J. Johnston, S. Bort, S. Mudri, J.L. Kuijper, T. Bukowski, P. Shea, D.L. Dong, M. Dasovich, F.J. Grant, L. Lockwood, S.D. Levin, C. LeCiel, K. Waggie, H. Day, S. Topouzis, J. Kramer, R. Kuestner, Z. Chen, D. Foster, J. Parrish-Novak, and J.A. Gross. 2004. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nature Immunology 5: 752–760.

    Article  CAS  Google Scholar 

  8. Dambacher, J., F. Beigel, J. Seiderer, D. Haller, B. Göke, C.J. Auernhammer, and S. Brand. 2007. Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease. Gut 56: 1257–1265.

    Article  CAS  Google Scholar 

  9. Lei, Z., G. Liu, Q. Huang, M. Lv, R. Zu, G.-M. Zhang, Z.-H. Feng, and B. Huang. 2008. SCF and IL-31 rather than IL-17 and BAFF are potential indicators in patients with allergic asthma. Allergy 63: 327–332.

    Article  CAS  Google Scholar 

  10. Schmitz, J., A. Owyang, E. Oldham, Y. Song, E. Murphy, T.K. McClanahan, G. Zurawski, M. Moshrefi, J. Qin, X. Li, D.M. Gorman, J.F. Bazan, and R.A. Kastelein. 2005. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23: 479–490.

    Article  CAS  Google Scholar 

  11. Hudson, C.A., G.P. Christophi, R.C. Gruber, J.R. Wilmore, D.A. Lawrence, and P.T. Massa. 2008. Induction of IL-33 expression and activity in central nervous system glia. Journal of Leukocyte Biology 84: 631–643.

    Article  CAS  Google Scholar 

  12. Yasuoka, S., J. Kawanokuchi, B. Parajuli, S. Jin, Y. Doi, M. Noda, Y. Sonobe, H. Takeuchi, T. Mizuno, and A. Suzumura. 2011. Production and functions of IL-33 in the central nervous system. Brain Research 1385: 8–17.

    Article  CAS  Google Scholar 

  13. Liu, B., Y. Tai, S. Achanta, M.M. Kaelberer, A.I. Caceres, X. Shao, J. Fang, and S.-E. Jordt. 2016. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proceedings of the National Academy of Sciences of the United States of America 113: E7572–E7579.

    Article  CAS  Google Scholar 

  14. Barnes, P.J. 2011. Glucocorticosteroids: current and future directions. British Journal of Pharmacology 163: 29–43.

    Article  CAS  Google Scholar 

  15. Ericson-Neilsen, W., and A.D. Kaye. 2014. Steroids: pharmacology, complications, and practice delivery issues. The Ochsner Journal 14: 203–207.

    PubMed  PubMed Central  Google Scholar 

  16. Sorrells, S.F., and R.M. Sapolsky. 2007. An inflammatory review of glucocorticoid actions in the CNS. Brain, Behavior, and Immunity 21: 259–272.

    Article  CAS  Google Scholar 

  17. Matias, I., A.S. Buosi, and F.C.A. Gomes. 2016. Functions of flavonoids in the central nervous system: astrocytes as targets for natural compounds. Neurochemistry International 95: 85–91.

    Article  CAS  Google Scholar 

  18. Middleton, E., C. Kandaswami, and T.C. Theoharides. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews 52: 673–751.

    CAS  PubMed  Google Scholar 

  19. García-Lafuente, A., E. Guillamón, A. Villares, M.A. Rostagno, and J.A. Martínez. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflammation Research 58: 537–552.

  20. Wang, S., M. Cao, S. Xu, J. Shi, X. Mao, X. Yao, and C. Liu. 2020. Luteolin alters macrophage polarization to inhibit inflammation. Inflammation 43: 95–108.

    Article  CAS  Google Scholar 

  21. Asadi, S., B. Zhang, Z. Weng, A. Angelidou, D. Kempuraj, K.D. Alysandratos, and T.C. Theoharides. 2010. Luteolin and thiosalicylate inhibit HgCl(2) and thimerosal-induced VEGF release from human mast cells. International Journal of Immunopathology and Pharmacology 23: 1015–1020.

    Article  CAS  Google Scholar 

  22. Kempuraj, D., M. Tagen, B.P. Iliopoulou, A. Clemons, M. Vasiadi, W. Boucher, M. House, A. Wolfberg, and T.C. Theoharides. Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell-dependent stimulation of Jurkat T cells. British Journal of Pharmacology 155: 1076–1084.

  23. Zhang, J.-X., J.-G. Xing, L.-L. Wang, H.-L. Jiang, S.-L. Guo, and R. Liu. 2017. Luteolin inhibits fibrillary β-amyloid(1-40)-induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-κB signaling pathways. Molecules 22: 334.

    Article  Google Scholar 

  24. Sawatzky, D.A., D.A. Willoughby, P.R. Colville-Nash, and A.G. Rossi. 2006. The involvement of the apoptosis-modulating proteins ERK 1/2, Bcl-xL and Bax in the resolution of acute inflammation in vivo. The American Journal of Pathology 168: 33–41.

    Article  CAS  Google Scholar 

  25. Salehi, B., A. Venditti, M. Sharifi-Rad, D. Kręgiel, J. Sharifi-Rad, A. Durazzo, M. Lucarini, A. Santini, E.B. Souto, E. Novellino, H. Antolak, E. Azzini, W.N. Setzer, and N. Martins. 2019. The therapeutic potential of apigenin. International Journal of Molecular Sciences 20: 1305.

    Article  CAS  Google Scholar 

  26. Che, D.N., B.O. Cho, J.Y. Shin, H.J. Kang, J.-S. Kim, H. Oh, Y.-S. Kim, and S.I. Jang. 2019. Apigenin inhibits IL-31 cytokine in human mast cell and mouse skin tissues. Molecules 24: 1290.

    Article  CAS  Google Scholar 

  27. Ghildiyal, R., and E. Sen. 2017. CK2 induced RIG-I drives metabolic adaptations in IFNγ-treated glioma cells. Cytokine 89: 219–228.

    Article  CAS  Google Scholar 

  28. Dang, Y., Z. Li, Q. Wei, R. Zhang, H. Xue, and Y. Zhang. 2018. Protective effect of apigenin on acrylonitrile-induced inflammation and apoptosis in testicular cells via the NF-κB pathway in rats. Inflammation 41: 1448–1459.

    Article  CAS  Google Scholar 

  29. Balez, R., N. Steiner, M. Engel, S.S. Muñoz, J.S. Lum, Y. Wu, D. Wang, P. Vallotton, P. Sachdev, M. O’Connor, K. Sidhu, G. Münch, and L. Ooi. 2016. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Scientific Reports 6: 31450.

    Article  CAS  Google Scholar 

  30. Venigalla, M., S. Sonego, E. Gyengesi, and G. Münch. 2015. Curcumin and apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease. Neural Regeneration Research 10: 1181–1185.

    Article  CAS  Google Scholar 

  31. Theoharides, T.C., D. Kempuraj, and B.P. Iliopoulou. 2007. Mast cells, T cells, and inhibition by luteolin: implications for the pathogenesis and treatment of multiple sclerosis. Advances in Experimental Medicine and Biology 601: 423–430.

    Article  Google Scholar 

  32. Rezai-Zadeh, K., J. Ehrhart, Y. Bai, P.R. Sanberg, P. Bickford, J. Tan, and R.D. Shytle. 2008. Apigenin and luteolin modulate microglial activation via inhibition of STAT1-induced CD40 expression. Journal of Neuroinflammation 5: 41.

    Article  Google Scholar 

  33. Li, T., X. Chen, C. Zhang, Y. Zhang, and W. Yao. 2019. An update on reactive astrocytes in chronic pain. Journal of Neuroinflammation 16: 140–140.

    Article  Google Scholar 

  34. Li, G., Y. Cao, F. Shen, Y. Wang, L. Bai, W. Guo, Y. Bi, G. Lv, and Z. Fan. 2016. Mdivi-1 inhibits astrocyte activation and astroglial scar formation and enhances axonal regeneration after spinal cord injury in rats. Frontiers in Cellular Neuroscience 10: 241.

    PubMed  PubMed Central  Google Scholar 

  35. Lee, Y., S. Lee, S.-C. Chang, and J. Lee. 2019. Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention. Archives of Pharmacal Research 42: 416–425.

    Article  CAS  Google Scholar 

  36. Guo, D.J., F. Li, P.H. Yu, and S.W. Chan. 2013. Neuroprotective effects of luteolin against apoptosis induced by 6-hydroxydopamine on rat pheochromocytoma PC12 cells. Pharmaceutical Biology 51: 190–196.

    Article  CAS  Google Scholar 

  37. Fu, J., H. Sun, Y. Zhang, W. Xu, C. Wang, Y. Fang, and J. Zhao. 2018. Neuroprotective effects of luteolin against spinal cord ischemia-reperfusion injury by attenuation of oxidative stress, inflammation, and apoptosis. Journal of Medicinal Food 21: 13–20.

    Article  CAS  Google Scholar 

  38. Hou, D.X., and T. Kumamoto. 2010. Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxidants & Redox Signaling 13: 691–719.

    Article  CAS  Google Scholar 

  39. Prasad, S., K. Phromnoi, V.R. Yadav, M.M. Chaturvedi, and B.B. Aggarwal. 2010. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Medica 76: 1044–1063.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2019R1F1A1060332).

Author information

Authors and Affiliations

Authors

Contributions

Seon Il Jang: conceptualization, methodology, resources, writing-review and editing, supervision. Byoung Ok Cho: methodology, writing-review and editing. Denis Nchang Che: methodology, investigation, and data analysis, writing-original draft. Ji-su Kim, Jae Young Shin, Hyun Ju Kang: validation and visualization.

Corresponding author

Correspondence to Seon Il Jang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Not applicable

Consent to Participate

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, D.N., Cho, B.O., Kim, Js. et al. Luteolin and Apigenin Attenuate LPS-Induced Astrocyte Activation and Cytokine Production by Targeting MAPK, STAT3, and NF-κB Signaling Pathways. Inflammation 43, 1716–1728 (2020). https://doi.org/10.1007/s10753-020-01245-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01245-6

KEY WORDS

Navigation