Skip to main content
Log in

Corynoline Exhibits Anti-inflammatory Effects in Lipopolysaccharide (LPS)-Stimulated Human Umbilical Vein Endothelial Cells through Activating Nrf2

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Corynoline, a bioactive compound isolated from Corydalis bungeana Turcz., has been known to have anti-inflammatory activity. However, its effects on the inflammation of the cardiovascular system have not been reported yet. The aim of this study was to investigate the anti-inflammatory effects of corynoline on lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs). The results showed that LPS significantly increased the expression of VCAM-1 and ICAM-1. The production of cytokines TNF-α and IL-8 was also up-regulated by LPS. However, these increases were concentration-dependently suppressed by the treatment of corynoline. To investigate the anti-inflammatory mechanism of corynoline, we checked the activation of NF-κB and the expression of Nrf2. The results showed that LPS-induced NF-κB activation was suppressed by corynoline. The expression of Nrf2 and HO-1 was up-regulated by the treatment of corynoline. Knockdown of Nrf2 could reverse the anti-inflammatory effects of corynoline. In conclusion, the results indicated that corynoline exhibited anti-inflammatory activity by activating Nrf2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. Ryan, S., C.T. Taylor, and W.T. McNicholas. 2009. Systemic inflammation: a key factor in the pathogenesis of cardiovascular complications in obstructive sleep apnoea syndrome? Thorax 64: 631–636.

    PubMed  CAS  Google Scholar 

  2. Weinberg, C.B., and E. Bell. 1986. A blood vessel model constructed from collagen and cultured vascular cells. Science 231: 397–400.

    Article  PubMed  CAS  Google Scholar 

  3. Cai, H., and D.G. Harrison. 2000. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circulation Research 87: 840–844.

    Article  PubMed  CAS  Google Scholar 

  4. Kofler, S., T. Nickel, and M. Weis. 2005. Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clinical Science (London, England) 108: 205–213.

    Article  CAS  Google Scholar 

  5. Mantovani, A., F. Bussolino, and M. Introna. 1997. Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immunology Today 18: 231–240.

    Article  PubMed  CAS  Google Scholar 

  6. Shu, Y.Z. 1998. Recent natural products based drug development: a pharmaceutical industry perspective. Journal of Natural Products 61: 1053–1071.

    Article  PubMed  CAS  Google Scholar 

  7. Yang, C., C. Zhang, Z. Wang, Z. Tang, H. Kuang, A.N. Kong. 2016 Corynoline isolated from Corydalis bungeana Turcz. Exhibits anti-inflammatory effects via modulation of Nfr2 and MAPKs. Molecules 21.

  8. Liu, Y., M. Song, G. Zhu, X. Xi, K. Li, C. Wu, and L. Huang. 2017. Corynoline attenuates LPS-induced acute lung injury in mice by activating Nrf2. International Immunopharmacology 48: 96–101.

    Article  PubMed  CAS  Google Scholar 

  9. Zhai, X.T., J.Q. Chen, C.H. Jiang, J. Song, D.Y. Li, H. Zhang, X.B. Jia, W. Tan, S.X. Wang, Y. Yang, and F.X. Zhu. 2016. Corydalis bungeana Turcz. attenuates LPS-induced inflammatory responses via the suppression of NF-kappaB signaling pathway in vitro and in vivo. Journal of Ethnopharmacology 194: 153–161.

    Article  PubMed  Google Scholar 

  10. Sallam, N., and I. Laher. 2016. Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases. Oxidative Medicine and Cellular Longevity 2016: 7239639.

    Article  PubMed  CAS  Google Scholar 

  11. Griffioen, A.W., and G. Molema. 2000. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacological Reviews 52: 237–268.

    PubMed  CAS  Google Scholar 

  12. Ikeoka, D., J.K. Mader, and T.R. Pieber. 2010. Adipose tissue, inflammation and cardiovascular disease. Revista da Associacao Medica Brasileira (1992) 56: 116–121.

    Article  Google Scholar 

  13. Esposito, K., and D. Giugliano. 2006. Diet and inflammation: a link to metabolic and cardiovascular diseases. European Heart Journal 27: 15–20.

    Article  PubMed  Google Scholar 

  14. Loos, B.G., J. Craandijk, F.J. Hoek, P.M. Wertheim-van Dillen, and U. van der Velden. 2000. Elevation of systemic markers related to cardiovascular diseases in the peripheral blood of periodontitis patients. Journal of Periodontology 71: 1528–1534.

    Article  PubMed  CAS  Google Scholar 

  15. Matsumori, A., T. Yamada, H. Suzuki, Y. Matoba, and S. Sasayama. 1994. Increased circulating cytokines in patients with myocarditis and cardiomyopathy. British Heart Journal 72: 561–566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Weber, C., L. Fraemohs, and E. Dejana. 2007. The role of junctional adhesion molecules in vascular inflammation. Nature Reviews. Immunology 7: 467–477.

    Article  PubMed  CAS  Google Scholar 

  17. Granger, D.N., and P. Kubes. 1994. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. Journal of Leukocyte Biology 55: 662–675.

    Article  PubMed  CAS  Google Scholar 

  18. Li, H., M.I. Cybulsky, M.A. Gimbrone Jr., and P. Libby. 1993. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arteriosclerosis and Thrombosis 13: 197–204.

    Article  PubMed  Google Scholar 

  19. Collins, T., and M.I. Cybulsky. 2001. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? The Journal of Clinical Investigation 107: 255–264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Silva-Palacios, A., M. Konigsberg, and C. Zazueta. 2016. Nrf2 signaling and redox homeostasis in the aging heart: a potential target to prevent cardiovascular diseases? Ageing Research Reviews 26: 81–95.

    Article  PubMed  CAS  Google Scholar 

  21. Li, J., T. Ichikawa, J.S. Janicki, and T. Cui. 2009. Targeting the Nrf2 pathway against cardiovascular disease. Expert Opinion on Therapeutic Targets 13: 785–794.

    Article  PubMed  CAS  Google Scholar 

  22. Cominacini, L., C. Mozzini, U. Garbin, A. Pasini, C. Stranieri, E. Solani, P. Vallerio, I.A. Tinelli, and A. Fratta Pasini. 2015. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radical Biology & Medicine 88: 233–242.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhe Fu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Su, K., Wang, J. et al. Corynoline Exhibits Anti-inflammatory Effects in Lipopolysaccharide (LPS)-Stimulated Human Umbilical Vein Endothelial Cells through Activating Nrf2. Inflammation 41, 1640–1647 (2018). https://doi.org/10.1007/s10753-018-0807-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0807-6

KEY WORDS

Navigation