Skip to main content
Log in

The effects of early spring stocking in an agricultural lake: a trophic cascade hypothesis

  • ROTIFERA XVI
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake Jošava (Croatia) is a shallow reservoir surrounded by agricultural land. In the present study, the trophic cascade was tested by examining the effects of stocking with common carp on plankton and periphytic microphytes. Before stocking, the phytoplankton community was dominated by the chrysophyte Synura uvella. In the epilithon and epiphyton, the predominant diatoms were prostrate, stalk-forming, and motile taxa representing an important food source for adult copepods. After stocking, phytoplankton biomass declined and the community shifted towards small centric diatoms, allowing the small-bodied zooplankton to exploit them. The lower biomass of adult copepods allowed rotifers to proliferate and exploit phytoplankton, while small cladocerans and nauplii fed primarily on epilithon. One month after stocking, phytoplankton was dominated by cryptophytes, small centric diatoms and chlorophytes, which were an important food for rotifers, while none of the zooplankton groups showed a significant relationship with the epilithic and epiphytic communities. By the end of the experiment, food was scarce due to reduced biomass of autotrophs, and zooplankton possibly began to feed on other sources. Our results add to the knowledge about the trophic cascade hypothesis in small shallow reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Adrian, R. & B. Schneider-Olt, 1999. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. Journal of Plankton Research 21: 2175–2190. https://doi.org/10.1093/plankt/21.11.2175.

    Article  Google Scholar 

  • Ale, S. B. & H. F. Howe, 2010. What do ecological paradigms offer to conservation? International Journal of Ecology. https://doi.org/10.1155/2010/250754.

    Article  Google Scholar 

  • Amoros, C., 1984. Crustaces Cladoceres. Introduction Pratique a la Systematique des Organismes des Eaux Continentales Francaises. Université Claude Bernard, Lyon, pp. 72–107.

  • Andersen, H. K. & J. Mayerl, 2022. Rehabilitating the lagged dependent variable with structural equation modeling. Structural Equation Modeling. https://doi.org/10.1080/10705511.2022.2131555.

    Article  Google Scholar 

  • Anonymous, 2015. Informacija o stanju i kvaliteti voda, te izvorima onečišćenja voda u 2014. godini na području Osječko-baranjske županije. Republika Hrvatska, Osječko-baranjska županija. (in Croatian only)

  • Benndorf, J., W. J. Böing, J. H. E. Koop & I. F. Neubauer, 2002. Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology 47: 2282–2295. https://doi.org/10.1046/j.1365-2427.2002.00989.x.

    Article  Google Scholar 

  • Bennion, H., C. Sayer, J. Tibby & H. Carrick, 2010. Diatoms as indicators of environmental change in shallow lakes. In Smol, J. & E. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences Cambridge University Press, Cambridge: 152–173.

    Chapter  Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1987. Quantitative comparison of food niches in some freshwater zooplankton. Oecologia 72: 331–340. https://doi.org/10.1007/BF00377560.

    Article  CAS  PubMed  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problem in zooplankton production studies. Norwegian Journal of Zoology 24: 419-456.

    Google Scholar 

  • Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Article  Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell (eds), 1993. The Trophic Cascade in Lakes. Cambridge University Press, New York.

    Google Scholar 

  • Diana, J. S. & A. W. Fast, 1989. The effects of water exchange rate and density on yield of the walking catfish, Clarias fuscus. Aquaculture 78: 267–276.

    Article  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2003. Eutrophication and restoration of shallow lakes–the concept of stable equilibria revisited. Hydrobiologia 506: 29–35. https://doi.org/10.1023/B:HYDR.0000008629.34761.ed.

    Article  Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of cladocera, copepoda and rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  PubMed  Google Scholar 

  • Einsle, U., 1993. Crustacea, Copepoda, Calanoida und Cyclopoida, Gustav Fischer Verlag, Berlin:

    Google Scholar 

  • Epskamp, S., 2015. semPlot: unified visualizations of structural equation models. Structural Equation Modeling 22: 474–483. https://doi.org/10.1080/10705511.2014.937847.

    Article  Google Scholar 

  • Estlander, S., L. Nurminen, M. Olin, M. Vinni & J. Horppila, 2009. Seasonal fluctuations in macrophyte cover and water transparency of four brown-water lakes: implications for crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia 620: 109–120. https://doi.org/10.1007/s10750-008-9621-8.

    Article  Google Scholar 

  • Fischer, J. R., R. M. Krogman & M. C. Quist, 2013. Influences of native and non-native benthivorous fishes on aquatic ecosystem degradation. Hydrobiologia 711: 187–199. https://doi.org/10.1007/s10750-013-1483-z.

    Article  CAS  Google Scholar 

  • Florian, N., R. Lopez-Luque, N. Ospina-Alvarez, L. Hufnagel & A. J. Green, 2016. Influence of a carp invasion on the zooplankton community in Laguna Medina, a Mediterranean shallow lake. Limnetica 35: 397–412. https://doi.org/10.23818/limn.35.32.

    Article  Google Scholar 

  • Fu, H., G. Yuan, K. Özkan, L. S. Johansson, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2020. Seasonal and long-term trends in the spatial heterogeneity of lake phytoplankton communities over two decades of restoration and climate change. Science of the Total Environment 748: 141106.

    Article  CAS  PubMed  Google Scholar 

  • Fu, H., K. Özkan, G. Yuan, L. S. Johansson, M. Søndergaard, T. L., Lauridsen & E. Jeppesen, 2021. Abiotic and biotic drivers of temporal dynamics in the spatial heterogeneity of zooplankton communities across lakes in recovery from eutrophication. Science of the Total Environment 778: 146368. https://doi.org/10.1016/j.scitotenv.2021.146368.

    Article  CAS  PubMed  Google Scholar 

  • Balkić, A. G., T. Ž Pfeiffer, K. Čmelar, D. Š Maronić, F. Stević, N. Bek, A. Martinović & R. Nikolašević, 2022. Footprint of the plastisphere on freshwater zooplankton. Environmental Research 212: 113563. https://doi.org/10.1016/j.envres.2022.113563.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, J. J., 2022. Food niches of planktonic rotifers: diversification and implications. Limnology and Oceanography 67: 2218–2251. https://doi.org/10.1002/lno.12199.

    Article  Google Scholar 

  • Haberman, J., R. Laugaste & T. Noges, 2007. The role of cladocerans reflecting the trophic status of two large and shallow Estonian lakes. Hydrobiologia 584: 157–166. https://doi.org/10.1007/s10750-007-0592-y.

    Article  Google Scholar 

  • Hansson, L.-A., 1988. Effects of competitive interactions on the biomass development of planktonic and periphytic algae in lakes. Limnology and Oceanography 33: 121–128. https://doi.org/10.4319/lo.1988.33.1.0121.

    Article  CAS  Google Scholar 

  • Hansson, L.-A., 1990. Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshwater Biology 24: 265–273. https://doi.org/10.1111/j.1365-2427.1990.tb00707.x.

    Article  Google Scholar 

  • Havel, J. E., 2009. Cladocera. In Gene, E. L. (ed), Encyclopedia of Inland Waters Academic Press, Oxford: 611–622. https://doi.org/10.1016/B978-012370626-3.00145-9.

    Chapter  Google Scholar 

  • He, H., Y. Han, Q. Li, E. Jeppesen, K. Li, J. Yu & Z. Liu, 2019. Crucian carp (Carassius carassius) strongly affect C/N/P stoichiometry of suspended particulate matter in shallow warm water eutrophic lakes. Water 11: 524. https://doi.org/10.3390/w11030524.

    Article  CAS  Google Scholar 

  • Hershey, A. E., G. A. Lamberti, D. T. Chaloner & R. M. Northington, 2010. Aquatic insect ecology. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates 3rd ed. Academic Press, Cambridge: 659–694.

    Chapter  Google Scholar 

  • Hillebrand, H., 2002. Top-down versus bottom-up control of autotrophic biomass: a meta-analysis on experiments with periphyton. Journal of the North American Benthological Society 21: 349–369. https://doi.org/10.2307/1468475.

    Article  Google Scholar 

  • Hindak, F., Z. Cyrus, P. Marvan, P. Javornicky, J. Komárek, H. Etll, K. Rosa, A. Sladečkova, J. Popovsky, M. Punčocharova & O. Lhotsky, 1978. Slatkovodne Riasy, Slovenske pedagogicke nakladelstvo, Bratislava:

    Google Scholar 

  • Huang, Y., X. Mei, L. G. Rudstam, W. D. Taylor, J. Urabe, E. Jeppesen & X. Zhang, 2020. Effects of crucian carp (Carassius auratus) on water quality in aquatic ecosystems: an experimental mesocosm study. Water 12: 1444. https://doi.org/10.3390/w12051444.

    Article  Google Scholar 

  • Huse, G., J. C. Holst, K. Utne, L. Nottestad, W. Melle, A. Slotte, G. Ottersen, T. Fenchel & F. Uiblein, 2012. Effects of interactions between fish populations on ecosystem dynamics in the Norwegian Sea—results of the INFERNO project Preface. Marine Biology Research 8: 415–419. https://doi.org/10.1080/17451000.2012.660165.

    Article  Google Scholar 

  • Huser, B. J., P. G. Bajer, S. Kittelson, S. Christenson & K. Menken, 2021. Changes to water quality and sediment phosphorus forms in a shallow, eutrophic lake after removal of common carp (Cyprinus carpio). Inland Waters 12: 1–14. https://doi.org/10.1080/20442041.2020.1850096.

    Article  CAS  Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147. https://doi.org/10.1007/s10750-011-0645-0.

    Article  Google Scholar 

  • Javornický, P. & J. Komárková, 1973. The changes in several parameters of plankton primary productivity in Slapy Reservoir 1960–1967, their mutual correlations and correlations with the main ecological factors. In Hrbáček, J. & M. Straškraba (eds), Hydrobiological studies Academia, Prague: 155–211.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2000. Trophic structure, species richness and biodiversity in Danish lakes: changes along phosphorus gradient. Freshwater Biology 45: 201–218. https://doi.org/10.1046/j.1365-2427.2000.00675.x.

    Article  CAS  Google Scholar 

  • Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Crustacea) variations in the process of lake eutrophication. II. Modifying effect of biotic agents. Ekologia Polska 33: 617–644.

    Google Scholar 

  • Keckeis, S., C. Baranyi, T. Hein, C. Holarek, P. Riedler & F. Schiemer, 2003. The significance of zooplankton grazing in a floodplain system of the River Danube. Journal of Plankton Research 25: 243–253. https://doi.org/10.1093/plankt/25.3.243.

    Article  Google Scholar 

  • Kerfoot, W. C., 1978. Combat between predatory copepods and their prey: cyclops, epischura, and bosmina. Limnology and Oceanography 23: 1089–1102.

    Article  Google Scholar 

  • Komárek, J. & K. Anagnostidis, 2005. Cyanoprokaryota 2: Teil/nd Part: Oscillatoriales. In Büdel, B., L. Krienitz, G. Gärtner & M., Schagerl, (eds), Süsswasserflora von Mitteleuropa. Elsevier, Spektrum.

    Google Scholar 

  • Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocytous Genera. In Büdel, B., G. Gärtner, L. Krienitz & M. Schagerl (eds), Süßwasserflora von Mitteleuropa 19/3 Springer, Berlin: 1030.

    Chapter  Google Scholar 

  • Koste, W., 1978. Die Rädertiere Mitteleuropas, Gebrüder Borntraeger, Berlin:, 673.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1999. Bacillariophyceae 1. Teil: Naviculaceae. In: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H. & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa, Bacillariophyceae 2/1, Spektrum Akademischer, Heidelberg, pp. 876.

  • Krammer, K. & H. Lange-Bertalot, 2008a. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Süsswasserflora von Mitteleuropa, Bacillariophyceae Ettl, H., Gärtner, G., Gerloff, J., Heynig, H. & D. Mollenhauer (Eds.) 2/2, Spektrum Akademischer, Heidelberg, pp. 611.

  • Krammer, K. & H. Lange-Bertalot, 2008b. Süßwasserflora von Mitteleuropa. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Süsswasserflora von Mitteleuropa, Bacillariophyceae Ettl, H., Gärtner, G., Gerloff, J., Heynig, H. & D. Mollenhauer (Eds.) Spektrum Akademischer, Heidelberg, pp. 599.

  • Kuczyńska-Kippen, N., 2007. Habitat choice in rotifera communities of three shallow lakes: impact of macrophyte substratum and season. Hydrobiologia 593(1): 27–37. https://doi.org/10.1007/s10750-007-9073-6.

    Article  Google Scholar 

  • Lawrence, S. G., D. F. Malley, W. J. Findlay, M. A. Maclver & I. L. Delbaere, 1987. Method for estimating dry weight of freshwater planktonic crustaceans from measures of lenght and shape. Canadian Journal of Fisheries and Aquatic Sciences 44(S1): 264–274. https://doi.org/10.1139/f87-301.

    Article  Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–417. https://doi.org/10.2307/1930126.

    Article  Google Scholar 

  • Liu, F. S., B. R. Lockett, R. J. Sorichetti, S. A. Watmough & M. C. Eimers, 2022. Agricultural intensification leads to higher nitrate levels in Lake Ontario tributaries. Science of the Total Environment 830: 154534. https://doi.org/10.1016/j.scitotenv.2022.154534.

    Article  CAS  PubMed  Google Scholar 

  • Lomartire, S., J. C. Marques & A. M. Gonçalves, 2021. The key role of zooplankton in ecosystem services: a perspective of interaction between zooplankton and fish recruitment. Ecological Indicators 129: 107867. https://doi.org/10.1016/j.ecolind.2021.107867.

    Article  Google Scholar 

  • Margaritoria, F., 1983. Cladoceri (Crustacea: Cladocera). Guide per il Reconoscimiento delle Specie Animali delle Acque Interne Italiane. Consiglio Nazionale delle Ricerche, Roma, pp. 169.

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assesment of Secondary Productivity in Fresh Waters Blackwell Scientific Publishers, Oxford: 228–265.

    Google Scholar 

  • Mihaljević, M., T. Žuna Pfeiffer, F. Stević & D. Špoljarić, 2013. Dynamics of phytoplankton and periphytic algae in a Danubian floodplain lake: a comparative study under altered hydrological conditions. Fresenius Environmental Bulletin 22: 2516–2523.

    Google Scholar 

  • Moulton, T. P., M. L. Souza, R. M. L. Silveira & F. A. M. Krsulović, 2004. Effects of ephemeropterans and shrimps on periphyton and sediments in a coastal stream (Atlantic forest, Rio de Janeiro, Brazil). Journal of the North American Benthological Society 23: 868–881. https://doi.org/10.1899/0887-3593(2004)023%3C0868:EOEASO%3E2.0.CO;2.

    Article  Google Scholar 

  • McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 1571–1581.

    Article  Google Scholar 

  • Nikolašević, R., 2018. Antropogeni utjecaji na fitoplankton jezera Jošava. Undergraduate thesis. Josip Juraj Strossmayer University of Osijek, Department of biology, Osijek. (in Croatian only)

  • Opačak, A., Ž. Vuković, S. Majić & D. Jelkić, 2008. Ribolovno-gospodarska osnova Zajednice športskih ribolovnih udruga Đakovo. Josip Juraj Strossmayer University of Osijek, Faculty of agriculture in Osijek, Osijek. (in Croatian only)

  • Pace, M. L., J. J. Cole, S. R. Carpenter & J. F. Kitchell, 1999. Trophic cascades revealed in diverse ecosystems. Trends in Ecology & Evolution 14: 483–488. https://doi.org/10.1016/S0169-5347(99)01723-1.

    Article  CAS  Google Scholar 

  • Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178. https://doi.org/10.1016/j.aquabot.2006.09.018.

    Article  Google Scholar 

  • Polis, G. A. & D. R. Strong, 1996. Food web complexity and community dynamics. The American Naturalist 147: 813–846. https://doi.org/10.1086/285880.

    Article  Google Scholar 

  • Preston, D. L., J. S. Henderson, L. P. Falke, L. M. Segui, T. J. Layden & M. Novak, 2018. What drives interaction strengths in complex food webs? A test with feeding rates of a generalist stream predator. Ecology 99: 1591–1601. https://doi.org/10.1002/ecy.2387.

    Article  PubMed  Google Scholar 

  • Qiu, X., X. Mei, V. Razlutskij, L. G. Rudstam, Z. Liu, C. Tong & X. Zhang, 2019. Effects of common carp (Cyprinus carpio) on water quality in aquatic ecosystems dominated by submerged plants: a mesocosm study. Knowledge and Management of Aquatic Ecosystems 420: 28. https://doi.org/10.1051/kmae/2019017.

    Article  Google Scholar 

  • Rai, S. & Y. Yi, 2012. Nibbling frequency of carps in fed and non-fed periphyton-based aquaculture system. Israeli Journal of Aquaculture 64: 4818–4822. https://doi.org/10.46989/001c.20606.

    Article  Google Scholar 

  • Raven, J. A. & J. Beardall, 2022. Evolution of Phytoplankton in Relation to Their Physiological Traits. Journal of Marine Science and Engineering 10: 194. https://doi.org/10.3390/jmse10020194.

    Article  Google Scholar 

  • Reid, J. W. & C. E. Williamson, 2010. Copepoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates Academic Press, Cambridge: 829–899.

    Chapter  Google Scholar 

  • Reynolds, C. S., 1984. The Ecology of Freshwater Phytoplankton, Cambridge University Press, Cambridge:

    Google Scholar 

  • Reynolds, C. S., 1994. The ecological basis for the successful biomanipulation of aquatic communities. Archiv Für Hydrobiologie 130: 1–33. https://doi.org/10.1127/archiv-hydrobiol/130/1994/1.

    Article  Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge:, 535.

    Book  Google Scholar 

  • Rosseel, Y., 2012. Lavaan: an R package for structural equation modeling. Journal of Statistical Software 48: 1–36. https://doi.org/10.18637/jss.v048.i02.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibration. Schweiz. Z. Hydrologie 43: 34–62. https://doi.org/10.1007/BF02502471.

    Article  Google Scholar 

  • Ryderheim, F., J. Grønning & T. Kiørboe, 2022. Thicker shells reduce copepod grazing on diatoms. Limnology and Oceanography Letters 7: 435–442. https://doi.org/10.1002/lol2.10243.

    Article  Google Scholar 

  • Ruttner-Kolisko, A., 1974. Plankton Rotifers: Biology and Taxonomy, E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart:, 146.

    Google Scholar 

  • Sabatier, P. A., 1986. Top-down and bottom-up approaches to implementation research: a critical analysis and suggested synthesis. Journal of Public Policy 6: 21–48.

    Article  Google Scholar 

  • Sánchez, M., H. Pizarro, G. Tell & I. Izaguirre, 2010. Relative importance of periphyton and phytoplankton in turbid and clear vegetated shallow lakes from the Pampa Plain (Argentina): a comparative experimental study. Hydrobiologia 646: 271–280. https://doi.org/10.1007/s10750-010-0181-3.

    Article  CAS  Google Scholar 

  • Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton Cambridge University Press, Cambridge: 9–104.

    Google Scholar 

  • Sandgren, C. D. & W. E. Walton, 1995. Zooplankton herbivory and chrysophyte biogeography. In Sandgren, C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae: Ecology, Phylogeny and Development Cambridge University Press, Cambridge: 269–302.

    Chapter  Google Scholar 

  • Scheffer, M. & E. Jeppesen, 1998. Alternative stable states. In Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christoffersen (eds), The structuring role of Submerged Macrophytes in Lakes: Ecological Studies 131: 397–406. Springer, New York.

    Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466. https://doi.org/10.1007/s10750-007-0616-7.

    Article  CAS  Google Scholar 

  • Schindler, D. E., J. F. Kitchell, X. He, S. R. Carpenter, J. R. Hodgson & K. L. Cottingham, 1993. Food web structure and phosphorus cycling in lakes. Transactions of the American Fisheries Society 122: 756–772. https://doi.org/10.1577/1548-8659(1993)122%3C0756:FWSAPC%3E2.3.CO;2.

    Article  CAS  Google Scholar 

  • SCOR-Unesco, 1966. Determinations of photosynthetic pigments in seawater. In: Report of SCOR-Unesco Working Group 17 (Ed.), Monographs on oceanographic methodology, Paris, pp. 11–18.

  • Sharma, J. G. & R. Chakrabarti, 2004. Role of stocking density on growth and survival of catla, Catla catla, and rohu, Labeo rohita, larvae and water quality in a recirculating system. Journal of Applied Aquaculture 14: 171–178.

    Article  Google Scholar 

  • Shipley, B., 2016. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference with R, Cambridge University Press, Cambridge:

    Book  Google Scholar 

  • Silliman, B. R. & C. Angelini, 2012. Trophic cascades across diverse plant ecosystems. Nature Education Knowledge 3(10): 44.

    Google Scholar 

  • Smakulska, J. & A. Górniak, 2004. Morphological variation in Daphnia cucullata Sars with progressive eutrophication of a polymictic lowland reservoir. Hydrobiologia 526: 119–127. https://doi.org/10.1023/B:HYDR.0000041609.76694.fd.

    Article  Google Scholar 

  • Sommer, U., 2008. Trophic cascades in marine and freshwater plankton. International Review of Hydrobiology 93: 506–516. https://doi.org/10.1002/iroh.200711039.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv Für Hydrobiologie 106: 433–471.

    Article  Google Scholar 

  • Sournia, A., 1978. Phytoplankton manual. In: Unesco (Ed.), Monographs on oceanographic methodology. Unesco, Paris

  • Stamou, G., M. Katsiapi, M. Moustaka-Gouni & E. Michaloudi, 2019. Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 844: 83–103. https://doi.org/10.1007/s10750-018-3880-9.

    Article  CAS  Google Scholar 

  • Stamou, G., A. D. Mazaris, M. Moustaka-Gouni, M. Špoljar, I. Ternjej, T. Dražina, Z. Dorak & E. Michaloudi, 2022. Introducing a zooplanktonic index for assessing water quality of natural lakes in the Mediterranean region. Ecological Informatics 69: 101616. https://doi.org/10.1016/j.ecoinf.2022.101616.

    Article  Google Scholar 

  • Stević, F., 2001. Fitoplankton akumulacije Jošava kod Đakova. Master thesis. Josip Juraj Strossmayer University of Osijek, Faculty of Humanities and Social Sciences, Osijek. (in Croatian only)

  • Stilinović, B. & A. Plenković-Moraj, 1995. Bacterial and phytoplanktonic research of Ponikve artificial lake on the island of Krk. Periodicum Biologorum 97: 351–358.

    Google Scholar 

  • Strickland, J. D. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bulletin - Fisheries Research Board of Canada 167: 185–192.

    Google Scholar 

  • Stumm, W. & J. Morgan, 1996. Aquatic Chemistry, 3rd ed. Wiley, New York: 1022.

    Google Scholar 

  • Suárez-Morales, E., 2015. Class maxillopoda. In Thorp, J. H. & D. Covich (eds), Freshwater Invertebrates, 1: 709–755. Academic Press, Cambridge.

    Chapter  Google Scholar 

  • Špoljar, M., T. Tomljanović, T. Dražina, J. Lajtner, H. Štulec, D. Matulić & J. Fressl, 2016. Zooplankton structure in two interconnected ponds: similarities and differences. Croatian Journal of Fisheries 74: 6–13. https://doi.org/10.1515/cjf-2016-0002.

    Article  Google Scholar 

  • Taipale, S., U. Strandberg, E. Peltomaa, A. W. E. Galloway, A. Ojala & M. T. Brett, 2013. Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquatic Microbial Ecology 71: 165–178. https://doi.org/10.3354/ame01671.

    Article  Google Scholar 

  • Tasnim, B., X. Fang, J. S. Hayworth & D. Tian, 2021. Simulating nutrients and phytoplankton dynamics in lakes: model development and applications. Water 13: 2088. https://doi.org/10.3390/w13152088.

    Article  Google Scholar 

  • Tidwell, J. H., C. D. Webster, S. D. Coyle & G. Schulmeister, 1998. Effect of stocking density on growth and water quality for largemouth bass Micropterus salmoides growout in ponds. Journal of World Aquaculture Society 29: 79–83.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Der Internationale Vereinigung Für Theoretische Und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vadeboncoeur, Y. & A. Steinman, 2002. Periphyton function in lake ecosystems. The Scientific World Journal 2: 1449–1468. https://doi.org/10.1100/tsw.2002.294.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber, M. J. & M. L. Brown, 2009. Effects of common carp on aquatic ecosystems 80 years after “carp as a dominant”: ecological insights for fisheries management. Reviews in Fisheries Science 17: 524–537. https://doi.org/10.1080/10641260903189243.

    Article  Google Scholar 

  • Weilhoefer, C. L. & Y. Pan, 2022. Can diatom motility indices reflect excess fine sediment condition in streams? Ecological Indicators 140: 109012. https://doi.org/10.1016/j.ecolind.2022.109012.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 2001. Limnology Lake and Reservoir Ecosystems, Academic Press, San Diego:, 1006.

    Google Scholar 

  • Zhao, K., L. Wang, Q. You, Y. Pan, T. Liu, Y. Zhou & Q. Wang, 2021. Influence of cyanobacterial blooms and environmental variation on zooplankton and eukaryotic phytoplankton in a large, shallow, eutrophic lake in China. Science of the Total Environment 773: 145421. https://doi.org/10.1016/j.scitotenv.2021.145421.

    Article  CAS  PubMed  Google Scholar 

  • Žuna Pfeiffer, T., M. Mihaljević, D. Špoljarić, F. Stević & A. Plenković-Moraj, 2015. The disturbance-driven changes of periphytic algal communities in a Danubian floodplain lake. Knowledge and Management of Aquatic Ecosystems 416: 02. https://doi.org/10.1051/kmae/2014038.

    Article  Google Scholar 

  • Žuna Pfeiffer, T., D. Špoljarić Maronić, F. Stević, A. Galir Balkić, N. Bek, A. Martinović, T. Mandir, R. Nikolašević & D. Janjić, 2022. Plastisphere development in relation to the surrounding biotic communities. Environmental Pollution 306: 119380. https://doi.org/10.1016/j.envpol.2022.119380.

    Article  CAS  PubMed  Google Scholar 

Web reference

Download references

Acknowledgements

This work was supported by the Josip Juraj Strossmayer University of Osijek, Department of Biology No. 310524. The funding had no influence on the study design, the collection, analysis, and interpretation of the data, the writing of the report, or the decision to submit the article for publication. The authors would like to acknowledge the contribution of Matej Šag for field assistance and Elena Jedvaj for laboratory work. We thank the anonymous reviewers for their careful reading and insightful comments and suggestions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AGB, DŠM; Methodology: AGB, DŠM, TŽP, NB, FS, AK; Formal analysis and investigation: AGB, DŠM, TŽP, NB, FS, DR, AK; Writing—original draft preparation: AGB, DŠM, TŽP; Writing—review and editing: NB, FS, IB, RN, DR; Funding acquisition: DŠM.

Corresponding author

Correspondence to Dubravka Špoljarić Maronić.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Informed consent

All authors reviewed the manuscript and agreed with its contents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest editors: Maria Špoljar, Diego Fontaneto, Elizabeth J. Walsh & Natalia Kuczyńska-Kippen / Diverse Rotifers in Diverse Ecosystems

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 115 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galir Balkić, A., Špoljarić Maronić, D., Žuna Pfeiffer, T. et al. The effects of early spring stocking in an agricultural lake: a trophic cascade hypothesis. Hydrobiologia 851, 3061–3077 (2024). https://doi.org/10.1007/s10750-023-05308-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-023-05308-1

Keywords

Navigation