Skip to main content
Log in

Broad-scale spatial patterns of canopy cover and pond morphology affect the structure of a Neotropical amphibian metacommunity

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Spatial and environmental processes influence species composition at distinct scales. Previous studies suggested that the distribution of larval anurans at the landscape-scale is influenced by environmental gradients related to adult breeding site selection, such as pond canopy cover, but not by water chemistry. However, the combined effects of spatial, pond morphology, and water chemistry variables on metacommunity structure of larval anurans have not been analyzed yet. We used a partial redundancy analysis with variation partitioning to analyze the relative influence of pond morphology (e.g., depth, area, and aquatic vegetation), water chemistry, and spatial variables on a tadpole metacommunity from southeastern Brazil. We predict that pond morphology and canopy cover will influence the metacommunity at broad spatial scales, while water chemistry would play a larger role at finer scales. We found that broad-scale spatial patterns of pond canopy cover and pond morphology strongly influenced metacommunity structure, with water chemistry being not significant. Additionally, species composition was spatially autocorrelated at short distances. We suggest that the reproductive behavior of adult anurans is driving tadpole metacommunity dynamics, since pond morphology, but not water chemistry affects breeding site selection by adults. Our results contribute to the understanding of amphibian species diversity in tropical wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altermatt, F., S. Schreiber & M. Holyoak, 2011. Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities. Ecology 92: 859–870.

    Article  PubMed  Google Scholar 

  • Binckley, C. A. & W. J. Resetarits, 2007. Effects of forest canopy on habitat selection in treefrogs and aquatic insects: implications for communities and metacommunities. Oecologia 153: 951–958.

    Article  PubMed  Google Scholar 

  • Bivand, R., 2012. spdep: Spatial Dependence: Weighting Schemes, Statistics and Models. R package version 0.5-53. http://CRAN.R-project.org/package=spdep. Accessed 6 April 2014.

  • Borcard, D., P. Legendre, C. Avois-Jacquet & H. Tuomisto, 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85: 1826–1832.

    Article  Google Scholar 

  • Brodman, R., J. Ogger, T. Bogard, A. J. Long, R. A. Pulver, K. Mancuso & D. Falk, 2003. Multivariate analyses of the influences of water chemistry and habitat parameters on the abundances of pond-breeding amphibians. Journal of Freshwater Ecology 18: 425–436.

    Article  CAS  Google Scholar 

  • Chase, J. M., P. Amarasekare, K. Cottenie, A. Gonzalez, R. D. Holt, M. Holyoak, M. F. Hoopes, M. A. Leibold, M. Loreau, N. Mouquet, J. B. Shurin & D. Tilman, 2005. Competing theories for competitive metacommunities. In Holyoak, M., M. A. Leibold & R. D. Holt (eds), Metacommunities: Spatial Dynamics and Ecological Communities. Chicago University Press, Chicago: 335–354.

  • Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31: 343–366.

    Article  Google Scholar 

  • Diniz-Filho, J. A. F., T. Siqueira, A. A. Padial, T. F. Rangel, V. L. Landeiro & L. M. Bini, 2012. Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos 121: 201–210.

    Article  Google Scholar 

  • Dray, S., 2009. packfor: Forward Selection with Permutation (Canoco p. 46). R package version 0.0-7/r58. http://R-Forge.R-project.org/projects/sedar/. Accessed 6 April 2014.

  • Dray, S., R. Pélissier, P. Couteron, M. J. Fortin, P. Legendre, P. R. Peres-Neto, E. Bellier, R. Bivand, F. G. Blanchet, M. De Cáceres, A. B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse & H. H. Wagner, 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs 82: 257–275.

    Article  Google Scholar 

  • Earl, J. E., T. M. Luhring, B. K. Williams & R. D. Semlitsch, 2011. Biomass export of salamanders and anurans from ponds is affected differentially by changes in canopy cover. Freshwater Biology 56: 2473–2482.

    Article  Google Scholar 

  • Furrer, R., D. Nychka & S. Sain, 2011. fields: Tools for Spatial Data. R package version 6.6. http://CRAN.R-project.org/package=fields. Accessed 6 April 2014.

  • Gilbert, B. & J. R. Bennett, 2010. Partitioning variation in ecological communities: do the numbers add up? Journal of Applied Ecology 47: 1071–1082.

    Article  Google Scholar 

  • Hájek, M., J. Roleček, K. Cottenie, K. Kintrová, M. Horsák, A. Poulíčková, P. Hájková, M. Fránková & D. Dítě, 2011. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography 38: 1683–1693.

    Article  Google Scholar 

  • Hecnar, S. & R. M’Closkey, 1996. Amphibian species richness and distribution in relation to pond water chemistry in south-western Ontario, Canada. Freshwater Biology 36: 7–15.

    Article  CAS  Google Scholar 

  • Hoverman, J. T., C. J. Davis, E. E. Werner, D. K. Skelly, R. A. Relyea & K. L. Yurewicz, 2011. Environmental gradients and the structure of freshwater snail communities. Ecography 34: 1049–1058.

    Article  Google Scholar 

  • Landeiro, V. L., W. E. Magnusson, A. S. Melo, H. M. V. Espírito-Santo & L. M. Bini, 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshwater Biology 56: 1184–1192.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology, 3rd ed. Elsevier, Oxford.

    Google Scholar 

  • Legendre, P., D. Borcard, G. Blanchet & S. Dray, 2010. PCNM: PCNM Spatial Eigenfunction and Principal Coordinate Analyses. R package version 2.1/r82. http://R-Forge.R-project.org/projects/sedar/. Accessed 6 April 2014.

  • Leibold, M. A. & M. A. Mcpeek, 2006. Coexistence of the niche and neutral perspectives in community ecology. Ecology 87: 1399–1410.

    Article  PubMed  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge.

    Google Scholar 

  • Levin, S. A., 1992. The problem of pattern and scale in ecology. Ecology 73: 1943–1967.

    Article  Google Scholar 

  • Logue, J. B., N. Mouquet, H. Peter & H. Hillebrand, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology & Evolution 26: 482–491.

    Article  Google Scholar 

  • Massol, F., D. Gravel, N. Mouquet, M. W. Cadotte, T. Fukami & M. A. Leibold, 2011. Linking community and ecosystem dynamics through spatial ecology. Ecology Letters 14: 313–323.

    Article  PubMed  Google Scholar 

  • McCauley, S. J., C. J. Davis, R. A. Relyea, K. L. Yurewicz, D. K. Skelly & E. E. Werner, 2008. Metacommunity patterns in larval odonates. Oecologia 158: 329–342.

    Article  PubMed  Google Scholar 

  • McIntire, E. J. B. & A. Fajardo, 2009. Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90: 46–56.

    Article  PubMed  Google Scholar 

  • Miner, B. G., S. E. Sultan, S. G. Morgan, D. K. Padilla & R. A. Relyea, 2005. Ecological consequences of phenotypic plasticity. Trends in Ecology and Evolution 20: 685–692.

    Article  PubMed  Google Scholar 

  • Newman, R. A., 1992. Adaptive plasticity in amphibian metamorphosis. BioScience 42: 671–678.

    Article  Google Scholar 

  • Newman, R. A. & T. Squire, 2001. Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Molecular Ecology 10: 1087–1100.

    Article  CAS  PubMed  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2011. vegan: Community Ecology Package. R package version 1.17-12. http://CRAN.R-project.org/package=vegan. Accessed 6 April 2014.

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences 11: 1633–1644.

    Article  Google Scholar 

  • R Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.

  • Relyea, R. A., 2004. Fine-tuned phenotypes: tadpole plasticity under 16 combinations of predators and competitors. Ecology 85: 172–179.

    Article  Google Scholar 

  • Resetarits, W., C. A. Binckley & D. R. Chalcraft, 2005. Habitat selection, species interactions, and processes of community assembly in complex landscapes. In Holyoak, M., M. A. Leibold & R. D. Holt (eds), Metacommunities: Spatial Dynamics and Ecological Communities University of Chicago Press, Chicago. Chicago University Press, Chicago: 374–398.

    Google Scholar 

  • Schiesari, L., 2006. Pond canopy cover: a resource gradient for anuran larvae. Freshwater Biology 51: 412–423.

    Article  CAS  Google Scholar 

  • Semlitsch, R. D., 2008. Differentiating migration and dispersal processes for pond-breeding amphibians. Journal of Wildlife Management 72: 260–267.

    Article  Google Scholar 

  • Shurin, J. B., K. Cottenie & H. Hillebrand, 2009. Spatial autocorrelation and dispersal limitation in freshwater organisms. Oecologia 159: 151–159.

    Article  PubMed  Google Scholar 

  • Skelly, D. K. & J. L. Richardson, 2010. Larval sampling. In Dodd, C. K. (ed.), Amphibian ecology and conservation: a handbook of techniques. Oxford University Press, Oxford: 55–70.

    Google Scholar 

  • Skelly, D. K., E. E. Werner & S. A. Cortwright, 1999. Long-term distributional dynamics of a michigan amphibian assemblage. Ecology 80: 2326–2337.

    Article  Google Scholar 

  • Skelly, D. K., L. K. Freidenburg & J. M. Kiesecker, 2002. Forest canopy and the performance of larval amphibians. Ecology 83(4): 983–992.

    Article  Google Scholar 

  • Smith, M. A. & D. M. Green, 2005. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28: 110–128.

    Article  Google Scholar 

  • Smith, T. W. & J. T. Lundholm, 2010. Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33: 648–655.

    Article  Google Scholar 

  • Stoler, A. B. & R. A. Relyea, 2010. Living in the litter: the influence of tree leaf litter on wetland communities. Oikos 120: 862–872.

    Article  Google Scholar 

  • Ultsch, G. R., D. F. Bradford & J. Freda, 1999. Physiology: coping with the environment. In McDiarmid, R. W. & R. Altig (eds), Tadpoles: The Biology of Anuran Larvae. Chicago University Press, Chicago: 189–214.

    Google Scholar 

  • Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.

    Article  Google Scholar 

  • Wells, K. D., 2007. The Ecology and Behavior of Amphibians. University of Chicago Press, Chicago.

    Book  Google Scholar 

  • Werner, E. E. & K. S. Glennemeier, 1999. Influence of forest canopy cover on the breeding pond distributions of several amphibian species. Copeia 1999: 1–12.

    Article  Google Scholar 

  • Werner, E. E., D. K. Skelly, R. A. Relyea & K. L. Yurewicz, 2007. Amphibian species richness across environmental gradients. Oikos 116: 1697–1712.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno & C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1: 3–14.

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to M. Almeida Neto, F. Altermatt, L. M. Bini, J. W. Fox, V. L. Landeiro, G. F. Livingston, T. F. Rangel, and T. Siqueira for providing useful insights to this manuscript. A. Bispo and B. Vilela helped with the map. IBAMA provided collecting permits (#14474) and the staff of the Serra da Bocaina National Park kindly provided logistical support and housing. This paper is part of DBP master’s-thesis at the graduate program in Biologia Animal, supported by fellowships from FAPESP (#2008/55744-6) and CAPES-DS. We greatly acknowledge the input received from L.C. Schiesari and L. Casatti as members of DBP’s examining committee. MVG and TG-S were supported by FAPESP doctoral fellowships (#2008/50575-1, 2008/58979-4, respectively). DCRF thanks FAPESP (2010/52321-7) and CNPq (563075/2010-4). IAM was supported by a Jovem Pesquisador Grant from FAPESP (01/13341-3 and 06/56007-0). During the final preparation of the manuscript, DBP was supported by a CAPES-DS and CAPES-PDSE doctoral fellowships. We also thank all those who helped in the field and lab work. Voucher specimens are housed at the tadpole collection of DZSJRP-UNESP.

Note added in proof

Hypsiboas sp. (aff. polytaenius) was formally described as Hypsiboas bandeirantes, Caramaschi and Cruz, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo B. Provete.

Additional information

Handling editor: Lee B. Kats

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Provete, D.B., Gonçalves-Souza, T., Garey, M.V. et al. Broad-scale spatial patterns of canopy cover and pond morphology affect the structure of a Neotropical amphibian metacommunity. Hydrobiologia 734, 69–79 (2014). https://doi.org/10.1007/s10750-014-1870-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1870-0

Keywords

Navigation