Skip to main content

Advertisement

Log in

Incremental diagnostic and prognostic utility of left atrial deformation in heart failure using speckle tracking echocardiography

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Left atrium (LA) is a very important component of cardiovascular performance. The assessment of LA function has gathered the interest with expanding research supporting the utility as a biomarker for outcomes in heart failure (HF). Echocardiography is the main imaging modality which helps in a qualitative and quantitative assessment of the LA size and function. Recent advances in probe technology and software analysis have provided a better understanding of LA anatomy, physiology, pathology, and function. A variety of parameters have been defined as markers of LA function but there is no single parameter that best defines LA function. Speckle tracking echocardiography–derived analysis of LA deformation provides a window on all phases of LA function (reservoir, conduit, and booster pump). There is accumulative published data that supported the diagnostic and prognostic values of LA deformation integration during echo assessment of LA in HF. This review article summarized the clinical utility of LA deformation that may help in prediction, diagnosis, categorization, risk stratification, and guiding the proper selection of therapy in HF patients in daily practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data were obtained from the published references that were cited in the article.

References

  1. Carpenito M, Fanti D, Mega S, Benfari G, Bono MC, Rossi A et al (2021) The central role of left atrium in heart failure. Front Cardiovasc Med 8:704762

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kowallick JT, Lotz J, Hasenfuß G, Schuster A (2015) Left atrial physiology and pathophysiology: role of deformation imaging. World J Cardiol 7:299–305

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hoit BD (2014) Left atrial size and function: role in prognosis. J Am Coll Cardiol 63:493–505

    Article  PubMed  Google Scholar 

  4. Goette A, Kalman JM, Aguinaga L, Akar J, Cabrera JA, Chen SA et al (2017) EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication. Heart Rhythm 14:e3–e40

    Article  PubMed  Google Scholar 

  5. Thomas L, Abhayaratna WP (2017) Left atrial reverse remodeling: mechanisms, evaluation, and clinical significance. JACC: Cardiovasc Imaging 10:65–77

    PubMed  Google Scholar 

  6. Rossi A, Carluccio E, Cameli M, Inciardi R, Mandoli GE, D’Agostino A et al (2020) Left atrial remodeling in heart failure: coexistence and additive prognostic power of atrial dilation and dysfunction. Eur Heart J 41(Suppl 2):ehaa 946.1023

    Article  Google Scholar 

  7. Badano LP, Kolias TJ, Muraru D, Abraham TP, Aurigemma G, Edvardsen T et al (2018) Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 19:591–600

    Article  PubMed  Google Scholar 

  8. Cameli M, Miglioranza MH, Magne J, Mandoli GE, Benfari G, Ancona R et al (2020) Multicentric atrial strain comparison between two different modalities: MASCOT HIT study. Diagnostics (Basel) 10(11):946

    Article  PubMed  Google Scholar 

  9. Peng GJ, Luo SY, Zhong XF, Lin XX, Zheng YQ, Xu JF et al (2023) Feasibility and reproducibility of semi-automated longitudinal strain analysis: a comparative study with conventional manual strain analysis. Cardiovasc Ultrasound 21:12

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu H, Chen L, Song Y, He Y, Kang R, Liu S et al (2023) Use of left atrial automated functional myocardial imaging to identify patients with paroxysmal atrial fibrillation at high risk of stroke. Quant Imaging Med Surg 13:4313–4324

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mouselimis D, Tsarouchas AS, Pagourelias ED, Bakogiannis C, Theofilogiannakos EK, Loutradis C et al (2020) Left atrial strain, intervendor variability, and atrial fibrillation recurrence after catheter ablation: a systematic review and meta-analysis. Hellenic J Cardiol 61:154–164

    Article  PubMed  Google Scholar 

  12. Pathan F, D’Elia N, Nolan MT, Marwick TH, Negishi K (2017) Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr 30:59–70

    Article  PubMed  Google Scholar 

  13. Thomas L, Muraru D, Popescu BA, Sitges M, Rosca M, Pedrizzetti G et al (2020) Evaluation of left atrial size and function: relevance for clinical practice. J Am Soc Echocardiogr 33:934–952

    Article  PubMed  Google Scholar 

  14. Modin D, Biering-Sorensen SR, Mogelvang R, Alhakak AS, Jensen JS, Biering-Sorensen T (2019) Prognostic value of left atrial strain in predicting cardiovascular morbidity and mortality in the general population. Eur Heart J- Cardiovasc Imaging 20:804–815

    Article  PubMed  Google Scholar 

  15. Lin J, Ma H, Gao L, Wang Y, Wang J, Zhu Z et al (2020) Left atrial reservoir strain combined with E/E’ as a better single measure to predict elevated LV filling pressures in patients with coronary artery disease. Cardiovasc Ultrasound 18:11

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sugimoto T, Robinet S, Dulgheru R, Bernard A, Ilardi F, Contu L et al (2018) NORRE Study. Echocardiographic reference ranges for normal left atrial function parameters: results from the EACVI NORRE study. Eur Heart J- Cardiovasc Imaging 19:630–638

    Article  PubMed  Google Scholar 

  17. Ma CS, Liao YP, Fan JL, Zhao X, Su B, Zhou BY (2022) The novel left atrial strain parameters in diagnosing of heart failure with preserved ejection fraction. Echocardiography 39(3):416–425

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bytyçi I, Dini FL, Bajraktari A, Pugliese NR, D’Agostino A, Bajraktari G et al (2020) Speckle tracking-derived left atrial stiffness predicts clinical outcome in heart failure patients with reduced to mid-range ejection fraction. J Clin Med 9:1244

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fan JL, Su B, Zhao X, Zhou BY, Ma CS, Wang HP et al (2020) Correlation of left atrial strain with left ventricular end-diastolic pressure in patients with normal left ventricular ejection fraction. Int J Cardiovasc Imaging 36:1659–1666

    Article  PubMed  PubMed Central  Google Scholar 

  20. Braunauer K, Dungen HD, Belyavskiy E, Aravind-Kumar R, Frydas A, Kropf M et al (2020) Potential usefulness and clinical relevance of a novel left atrial filling index to estimate left ventricular filling pressures in patients with preserved left ventricular ejection fraction. Eur Heart J- Cardiovasc Imaging 21:260–269

    Article  PubMed  Google Scholar 

  21. Cameli M, Mandoli GE, Lisi E, Ibrahim A, Incampo E, Buccoliero G et al (2019) Left atrial, ventricular and atrio-ventricular strain in patients with subclinical heart dysfunction. Int J Cardiovasc Imaging 35:249–258

    Article  PubMed  Google Scholar 

  22. Omar AMS, Ronderos Botero DM, Arreaza Caraballo J, Kim GH, Khachatoorian Y, Sharma P et al (2021) Combined atrioventricular longitudinal strain rate during isovolumic contraction predicts pulmonary capillary wedge pressure in patients with systolic dysfunction. Am J Cardiovasc Dis 11:530–538

    PubMed  PubMed Central  Google Scholar 

  23. Kupczynska K, Michalski BW, Miskowiec D, Kasprzak JD, Szymczyk E, Wejner Mik P et al (2018) Incremental value of left atrial mechanical dispersion over CHADS -VASc score in predicting risk of thrombus formation. Echocardiography 35:651–660

    Article  PubMed  Google Scholar 

  24. Stefani LD, Trivedi SJ, Ferkh A, Altman M, Thomas L (2021) Changes in left atrial phasic strain and mechanical dispersion: effects of age and gender. Echocardiography 38:417–426

    Article  PubMed  Google Scholar 

  25. Kawakami H, Ramkumar S, Nolan M, Wright L, Yang H, Negishi K et al (2019) Left atrial mechanical dispersion assessed by strain echocardiography as an independent predictor of new-onset atrial fibrillation: a case-control study. J Am Soc Echocardiogr 32:1268–1276

    Article  PubMed  Google Scholar 

  26. Nemes A, Kormányos Á, Domsik P, Kalapos A, Lengyel C, Forster T (2019) Normal reference values of three-dimensional speckle-tracking echocardiography-derived left atrial strain parameters (results from the MAGYAR-Healthy Study). Int J Cardiovasc Imaging 35:991–998

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ghelani SJ, Brown DW, Kuebler JD, Perrin D, Shakti D, Williams DN et al (2018) Left atrial volumes and strain in healthy children measured by three-dimensional echocardiography: normal values and maturational changes. J Am Soc Echocardiogr 31:187–193

    Article  PubMed  Google Scholar 

  28. Yuda S (2021) Current clinical applications of speckle tracking echocardiography for assessment of left atrial function. J Echocardiogr 19:129–140

    Article  PubMed  Google Scholar 

  29. Nabeshima Y, Kitano T, Takeuchi M (2021) Reliability of left atrial strain reference values: a 3D echocardiographic study. PLoS One 16:e0250089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohseni-Badalabadi R, Mirjalili T, Jalali A, Davarpasand T, Hosseinsabet A (2022) A systematic review and meta-analysis of the normal reference value of the longitudinal left atrial strain by three dimensional speckle tracking echocardiography. Sci Rep 12:4395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Young KA, Scott CG, Rodeheffer RJ, Chen HH (2021) Progression of preclinical heart failure: a description of stage A and B heart failure in a community population. Circ Cardiovasc Qual Outcomes 14:e007216

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu L, Zhang B, Yang Y, Qi L, Wang S, Meng L et al (2022) Reduced left atrial contractile strain with speckle tracking analysis predicts abnormal plasma NTproBNP in an asymptomatic community population. Cardiovasc Ultrasound 20:27

    Article  PubMed  PubMed Central  Google Scholar 

  33. Porpáczy A, Nógrádi Á, Vértes V, Tőkés-Füzesi M, Czirják L, Komócsi A et al (2019) Left atrial stiffness is superior to volume and strain parameters in predicting elevated NT-proBNP levels in systemic sclerosis patients. Int J Cardiovasc Imaging 35:1795–802

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tadic M, Genger Cuspidi C, Belyavskiy E, Frydas A, Dordevic A et al (2019) Phasic left atrial function in cancer patients before initiation of anti-cancer therapy. J Clin Med 8:421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laufer-Perl M, Arias O, Dorfman SS, Baruch G, Rothschild E, Beer G et al (2021) Left atrial strain changes in patients with breast cancer during anthracycline therapy. Int J Cardiol 330:238–244

    Article  PubMed  Google Scholar 

  36. Park H, Kim KH, Kim HY, Cho JY, Yoon HJ, Hong YJ et al (2020) Left atrial longitudinal strain as a predictor of cancer therapeutics-related cardiac dysfunction in patients with breast cancer. Cardiovasc Ultrasound 18:1–8

    Article  Google Scholar 

  37. Chen N, Liu A, Sun S, Wei H, Sun Q, Shang Z et al (2022) Evaluation of left atrial function and mechanical dispersion in breast cancer patients after chemotherapy. Clin Cardiol 45:540–548

    Article  PubMed  PubMed Central  Google Scholar 

  38. Di Lisi D, Cadeddu Dessalvi C, Manno G, Manganaro R, Ricci JS, Carerj S et al (2021) Left atrial strain and left atrial stiffness for early detection of cardiotoxicity in cancer patients. Eur Heart J 42(Suppl 1):ehab724.021

    Article  Google Scholar 

  39. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM et al (2022) 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145:e895–e1032

    PubMed  Google Scholar 

  40. Bouwmeester S, van der Stam JA, van Loon SLM, van Riel NAW, Boer AK, Dekker LR et al (2022) Left atrial reservoir strain as a predictor of cardiac outcome in patients with heart failure: the HaFaC cohort study. BMC Cardiovasc Disord 22:104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jia F, Chen A, Zhang D, Fang L, Chen W (2022) Prognostic value of left atrial strain in heart failure: a systematic review and meta-analysis. Front Cardiovasc Med 9:935103

    Article  PubMed  PubMed Central  Google Scholar 

  42. Al Saikhan L, Hughes AD, Chung WS, Alsharqi M, Nihoyannopoulos P (2019) Left atrial function in heart failure with mid-range ejection fraction differs from that of heart failure with preserved ejection fraction: a 2D speckle-tracking echocardiographic study. Eur Heart J- Cardiovasc Imaging 20:279–290

    Article  PubMed  Google Scholar 

  43. Frydas A, Morris DA, Belyavskiy E, Radhakrishnan AK, Kropf M, Tadic M et al (2020) Left atrial strain as sensitive marker of left ventricular diastolic dysfunction in heart failure. ESC Heart Fail 7:1956–1965

    Article  PubMed  PubMed Central  Google Scholar 

  44. Reddy YNV, Obokata M, Egbe A, Yang JH, Pislaru S, Lin G et al (2019) Left atrial strain and compliance in the diagnostic evaluation of heart failure with preserved ejection fraction. Eur J Heart Fail 21:891–900

    Article  PubMed  Google Scholar 

  45. Rimbas RC, Visoiu IS, Magda SL, Mihaila-Baldea S, Luchian ML, Chitroceanu AM et al (2022) New insights into the potential utility of the left atrial function analysis in heart failure with preserved ejection fraction diagnosis. PLoS One 17:e0267962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Inoue K, Khan FH, Remme EW, Ohte N, García-Izquierdo E, Chetrit M et al (2021) Determinants of left atrial reservoir and pump strain and use of atrial strain for evaluation of left ventricular filling pressure. Eur Heart J- Cardiovasc Imaging 23:61–70

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tan TS, Akbulut IM, Demirtola AI, Serifler NT, Ozyuncu N, Esenboga K et al (2021) LA reservoir strain: a sensitive parameter for estimating LV filling pressure in patients with preserved EF. Int J Cardiovasc Imaging 37:2707–2716

    Article  PubMed  Google Scholar 

  48. Nagueh SF, Khan SU (2023) Left atrial strain for assessment of left ventricular diastolic function: focus on populations with normal LVEF. JACC Cardiovasc Imaging 16:691–707

    Article  PubMed  Google Scholar 

  49. Singh A, Addetia K, Maffessanti F, Mor-Avi V, Lang RM (2017) LA strain for categorization of LV diastolic dysfunction. JACC Cardiovasc Imaging 10:735–743

    Article  PubMed  Google Scholar 

  50. Maffeis C, Morris DA, Belyavskiy E, Kropf M, Radhakrishnan AK, Zach V et al (2021) Left atrial function and maximal exercise capacity in heart failure with preserved and mid-range ejection fraction. ESC Heart Fail 8:116–128

    Article  PubMed  Google Scholar 

  51. Zhou Y, Zhao CM, Shen ZY, Zhao X, Zhou BY (2021) Mitral early-diastolic inflow peak velocity (E)-to-left atrial strain ratio as a novel index for predicting elevated left ventricular filling pressures in patients with preserved left ventricular ejection fraction. Cardiovasc Ultrasound 19:17

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  53. Jin X, Nauta JF, Hung CL, Ouwerkerk W, Teng TK, Voors AA et al (2022) Left atrial structure and function in heart failure with reduced (HFrEF) versus preserved ejection fraction (HFpEF): systematic review and meta-analysis. Heart Fail Rev 27:1933–1955

    Article  PubMed  PubMed Central  Google Scholar 

  54. Carluccio E, Biagioli P, Mengoni A, Cerasa MF, Lauciello R, Zuchi C et al (2018) Left atrial reservoir function and outcome in heart failure with reduced ejection fraction. Circ Cardiovasc Imaging 11:e007696

    Article  PubMed  Google Scholar 

  55. Chimed S, Stassen J, Galloo X, Meucci MC, Van Der Bijl P, Marsan NA et al (2022) Left atrial reservoir strain and long-term prognosis in patients with heart failure and reduced ejection fraction. Eur Heart J 43(Suppl 2):ehac544.926

    Article  Google Scholar 

  56. Brás PG, Gonçalves AV, Branco LM, Moreira RI, Pereira-da-Silva T, Galrinho A et al (2023) Sacubitril/valsartan improves left atrial and ventricular strain and strain rate in patients with heart failure with reduced ejection fraction. Life 13:995

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sun Y, Chen X, Zhang Y, Yu Y, Zhang X, Si J et al (2023) Reverse atrial remodeling in heart failure with recovered ejection fraction. J Am Heart Assoc 12:e026891

    Article  PubMed  PubMed Central  Google Scholar 

  58. Torii Y, Kusunose K, Hirata Y, Nishio S, Ise T, Yamaguchi K et al (2021) Left atrial strain associated with functional recovery in patients receiving optimal treatment for heart failure. J Am Soc Echocardiogr 34:966–975

    Article  PubMed  Google Scholar 

  59. Kurzawski J, Janion-Sadowska A, Gackowski A, Janion M, Zandecki Ł, Chrapek M et al (2019) Left atrial longitudinal strain in dilated cardiomyopathy patients: is there a discrimination threshold for atrial fibrillation? Int J Cardiovasc Imaging 35:319–325

    Article  PubMed  Google Scholar 

  60. Raafs AG, Vos JL, Henkens MTHM, Slurink BO, Verdonschot JAJ, Bossers D et al (2022) Left atrial strain has superior prognostic value to ventricular function and delayed-enhancement in dilated cardiomyopathy. JACC Cardiovasc Imaging 15:1015–1026

    Article  PubMed  Google Scholar 

  61. Guler A, Tigen KM, Dundar C, Karaahmet T, Karabay CY, Aung SM et al (2014) Left atrial deformation and nonischemic dilated cardiomyopathy. A 2D speckle-tracking imaging study. Herz 39:251–257

    Article  CAS  PubMed  Google Scholar 

  62. Tigen K, Sunbul M, Karaahmet T, Dundar C, Ozben B, Guler A et al (2014) Left ventricular and atrial functions in hypertrophic cardiomyopathy patients with very high LVOT gradient: a speckle tracking echocardiographic study. Echocardiography 31:833–841

    Article  PubMed  Google Scholar 

  63. Fujimoto K, Inoue K, Saito M, Higashi H, Kono T, Uetani T et al (2018) Incremental value of left atrial active function measured by speckle tracking echocardiography in patients with hypertrophic cardiomyopathy. Echocardiography 35:1138–1148

    Article  PubMed  Google Scholar 

  64. Saijo Y, Van Iterson E, Vega Brizneda M, Desai MY, Lever HM, Smedira NG et al (2022) Impact of left atrial strain mechanics on exercise intolerance and need for septal reduction therapy in hypertrophic cardiomyopathy. Eur Heart J- Cardiovasc Imaging 23:238–245

    Article  PubMed  Google Scholar 

  65. Wazzan AA, Galli E, Lacout M, Paven E, L’official G, Schnell F et al (2023) Could echocardiographic left atrial characterization have additive value for detecting risks of atrial arrhythmias and stroke in patients with hypertrophic cardiomyopathy? Eur Heart J- Cardiovasc Imaging 24:616–624

    Article  PubMed  Google Scholar 

  66. Vasquez N, Ostrander BT, Lu DY, Ventoulis I, Haileselassie B, Goyal S et al (2019) Low left atrial strain is associated with adverse outcomes in hypertrophic cardiomyopathy patients. J Am Soc Echocardiogr 32:593–603

    Article  PubMed  Google Scholar 

  67. Lee HJ, Kim HK, Rhee TM, Choi YJ, Hwang IC, Yoon YE et al (2022) Left atrial reservoir strain-based left ventricular diastolic function grading and incident heart failure in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 15:e013556

    Article  PubMed  Google Scholar 

  68. Aimo A, Fabiani I, Giannoni A, Mandoli GE, Pastore MC, Vergaro G et al (2022) Multi-chamber speckle tracking imaging and diagnostic value of left atrial strain in cardiac amyloidosis. Eur Heart J Cardiovasc Imaging 24:130–141

    Article  PubMed  Google Scholar 

  69. Bandera F, Martone R, Chacko L, Ganesananthan S, Gilbertson JA, Ponticos M et al (2022) Clinical importance of left atrial infiltration in cardiac transthyretin amyloidosis. JACC Cardiovasc Imaging 15:17–29

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rausch K, Scalia GM, Sato K, Edwards N, Lam AK-Y, Platts DG et al (2021) Left atrial strain imaging differentiates cardiac amyloidosis and hypertensive heart disease. Int J Cardiovasc Imaging 37:81–90

    Article  PubMed  Google Scholar 

  71. Monte IP, Faro DC, Trimarchi G, de Gaetano F, Campisi M, Losi V et al (2023) Left atrial strain imaging by speckle tracking echocardiography: the supportive diagnostic value in cardiac amyloidosis and hypertrophic cardiomyopathy. J Cardiovasc Dev Dis 10:261

    PubMed  PubMed Central  Google Scholar 

  72. Huntjens PR, Zhang KW, Soyama Y, Karmpalioti M, Lenihan DJ, Gorcsan J (2021) Prognostic utility of echocardiographic atrial and ventricular strain imaging in patients with cardiac amyloidosis. JACC Cardiovasc Imaging 14:1508–1519

    Article  PubMed  Google Scholar 

  73. Oike F, Usuku H, Yamamoto E, Yamada T, Egashira K, Morioka M et al (2021) Prognostic value of left atrial strain in patients with wild-type transthyretin amyloid cardiomyopathy. ESC Heart Fail 8:5316–5326

    Article  PubMed  PubMed Central  Google Scholar 

  74. Averbuch T, White JA, Fine NM (2023) Anderson-Fabry disease cardiomyopathy: an update on epidemiology, diagnostic approach, management and monitoring strategies. Front Cardiovasc Med 10:1152568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Frumkin D, Mattig I, Laule N, Al Daas M, Canaan-Kühl S, Knebel F et al (2021) Comparative analysis of phasic left atrial strain and left ventricular posterolateral strain pattern to discriminate Fabry cardiomyopathy from other forms of left ventricular hypertrophy. Echocardiography 38:1870–1878

    Article  PubMed  Google Scholar 

  76. Pichette M, Serri K, Pagé M, Di LZ, Bichet DG, Poulin F (2017) Impaired left atrial function in Fabry disease: a longitudinal speckle-tracking echocardiography study. J Am Soc Echocardiogr 30:170–179.e2

    Article  PubMed  Google Scholar 

  77. Sharifov OF, Denney TS Jr, Girard AA, Gupta H, Lloyd SG (2023) Coronary artery disease is associated with impaired atrial function regardless of left ventricular filling pressure. Int J Cardiol 387:131102

    Article  PubMed  Google Scholar 

  78. Yu T, Cui H, Chang W, Li Y, Cui X, Li G (2022) Real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging in the evaluation of left atrial function in patients with triple-vessel coronary artery disease without myocardial infarction. J Clin Ultrasound 50:445–454

    Article  PubMed  Google Scholar 

  79. Fei M, Li M, Ran H, Sheng Z, Dong J, Zhang P (2022) Four-dimensional quantification on left atrial volume-strain in coronary heart disease patients without regional wall motion abnormalities: correlation with the severity of coronary stenosis. Echocardiography 39:758–767

    Article  PubMed  Google Scholar 

  80. Li YT, Shen WQ, Duan X, Li Y, Wang YX, Ren XX et al (2022) Left atrial strain predicts risk and prognosis in patients with acute coronary syndrome: a retrospective study with external validation. Heliyon 8:e11276

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rumbinaite E, Verikas D, Karuzas A, Jakuskaite G, Mamedov A, Sakaviciute E et al (2023) Left atrial strain rate: marker of hemodynamically significant coronary artery stenosis? Future Cardiol 19:155–162

    Article  CAS  PubMed  Google Scholar 

  82. Pastore MC, Mandoli GE, Dokollari A, Bisleri G, D’Ascenzi F, Santoro C et al (2022) Speckle tracking echocardiography in primary mitral regurgitation: should we reconsider the time for intervention? Heart Fail Rev 27:1247–1260

    Article  PubMed  Google Scholar 

  83. Mandoli GE, Pastore MC, Benfari G, Bisleri G, Maccherini M, Lisi G et al (2021) Left atrial strain as a pre-operative prognostic marker for patients with severe mitral regurgitation. Int J Cardiol 324:139–145

    Article  PubMed  Google Scholar 

  84. Stassen J, Namazi F, van der Bijl P, Marsan NA, Delgado V, Bax JJ et al (2022) Left atrial reservoir function and outcomes in secondary mitral regurgitation. J Am Soc echocardiogr 35:477–485

    Article  PubMed  Google Scholar 

  85. Malagoli A, Rossi L, Zanni A, Sticozzi C, Piepoli MF, Benfari G (2022) Quantified mitral regurgitation and left atrial function in heart failure with reduced ejection fraction: interplay and outcome implications. Eur J Heart Fail 24:694–702

    Article  PubMed  Google Scholar 

  86. Gomes DA, Lopes PM, Freitas P, Albuquerque F, Reis C, Guerreiro S et al (2023) Peak left atrial longitudinal strain is associated with all-cause mortality in patients with ventricular functional mitral regurgitation. Cardiovasc Ultrasound. https://doi.org/10.1186/s12947-023-00307-7

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stassen J, van Wijngaarden AL, Butcher SC, Palmen M, Herbots L, Bax JJ et al (2022) Prognostic value of left atrial reservoir function in patients with severe primary mitral regurgitation undergoing mitral valve repair. Eur Heart J- Cardiovasc Imaging 24:142–151

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gucuk Ipek E, Singh S, Viloria E, Feldman T, Grayburn P, Foster E et al (2018) Impact of the MitraClip procedure on left atrial strain and strain rate. Circ Cardiovasc Imaging 11:e006553

    Article  PubMed  Google Scholar 

  89. Biersmith M, Orsinelli DA, Harfi TT, Lilly S, Boudoulas KD (2022) Effect of mitral valve transcatheter edge-to-edge repair on indices of left atrial performance in chronic mitral regurgitation. Echocardiography 39:1420–1425

    Article  PubMed  Google Scholar 

  90. Her AY, Choi EY, Shim CY, Song BW, Lee S, Ha JW et al (2012) Prediction of left atrial fibrosis with speckle tracking echocardiography in mitral valve disease: a comparative study with histopathology. Korean Circ J 42:311–318

    Article  PubMed  PubMed Central  Google Scholar 

  91. Bouchahda N, Kallala MY, Zemni I, Ben Messaoud M, Boussaada M, Hasnaoui T et al (2021) Left atrium reservoir function is central in patients with rheumatic mitral stenosis. Int J Cardiovasc Imaging 38:1257–1266

    Article  Google Scholar 

  92. Chien CY, Chen CW, Lin TK, Lin Y, Lin JW, Li YD et al (2018) Atrial deformation correlated with functional capacity in mitral stenosis patients. Echocardiography 35:190–195

    Article  PubMed  Google Scholar 

  93. Mehta V, Chaudhari D, Mehra P, Mahajan S, Yusuf J, Gupta MD et al (2022) Left atrial function by two-dimensional speckle tracking echocardiography in patients with severe rheumatic mitral stenosis and pulmonary hypertension. Indian Heart J 74:63–65

    Article  PubMed  Google Scholar 

  94. Vriz O, Feras K, Alamri M, Blassy B, Almozel A, Smith M et al (2022) Severe rheumatic mitral stenosis, worse left atrial mechanics is closely associated with echo criteria for intervention. J Cardiovasc Echogr 32:38–46

    PubMed  PubMed Central  Google Scholar 

  95. Stassen J, Butcher SC, Namazi F, Ajmone Marsan N, Bax JJ, Delgado V (2022) Left atrial deformation imaging and atrial fibrillation in patients with rheumatic mitral stenosis. J Am Soc Echocardiogr 35:486–494

    Article  PubMed  Google Scholar 

  96. Marques-Alves P, Marinho AV, Teixeira R, Baptista R, Castro G, Martins R et al (2019) Going beyond classic echo in aortic stenosis: left atrial mechanics, a new marker of severity. BMC Cardiovasc Disord 19:215

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tan ESJ, Jin X, Oon YY, Chan SP, Gong L, Lunaria JB et al (2023) Prognostic value of left atrial strain in aortic stenosis: a competing risk analysis. J Am Soc Echocardiogr 36:29–37

    Article  PubMed  Google Scholar 

  98. Kalkan S, Efe SC, Tasar O, Koyuncu A, Yilmaz FM, Batgerel U et al (2021) The role of the left atrial strain parameters on grading of aortic regurgitation. J Cardiovasc Echogr 31:151–156

    PubMed  PubMed Central  Google Scholar 

  99. Lisi M, Pastore MC, Fiorio A, Cameli M, Mandoli GE, Righini FM et al (2022) Left atrial remodeling in response to aortic valve replacement: pathophysiology and myocardial strain analysis. Life 12:2074

    Article  PubMed  PubMed Central  Google Scholar 

  100. Weber J, Bond K, Flanagan J, Passick M, Petillo F, Pollack S et al (2021) The prognostic value of left atrial global longitudinal strain and left atrial phasic volumes in patients undergoing transcatheter valve implantation for severe aortic stenosis. Cardiology 146:489–500

    Article  PubMed  Google Scholar 

  101. Sabatino J, De Rosa S, Leo I, Strangio A, La Bella S, Sorrentino S et al (2021) Early reduction of left atrial function predicts adverse clinical outcomes in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Open Heart 8:e001685

    Article  PubMed  PubMed Central  Google Scholar 

  102. Deferm S, Martens P, Verbrugge FH, Bertrand PB, Dauw J, Verhaert D et al (2020) LA mechanics in decompensated heart failure: insights from strain echocardiography with invasive hemodynamics. JACC Cardiovasc Imaging 13:1107–1115

    Article  PubMed  Google Scholar 

  103. Maffeis C, Rossi A, Cannata L, Zocco C, Belyavskiy E, Radhakrishnan AK et al (2022) Left atrial strain predicts exercise capacity in heart failure independently of left ventricular ejection fraction. ESC Heart Fail 9:842–852

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sengupta SP, Okwose NC, MacGowan GA, Jakovljevic DG (2022) Peak atrio-ventricular mechanics predicts exercise tolerance in heart failure patients. Int J Cardiol 359:84–90

    Article  PubMed  Google Scholar 

  105. Kim D, Seo JH, Choi KH, Lee SH, Choi JO, Jeon ES et al (2023) Prognostic implications of left atrial stiffness index in heart failure patients with preserved ejection fraction. JACC Cardiovasc Imaging 16:435–445

    Article  PubMed  Google Scholar 

  106. Bytyçi I, D’Agostino A, Bajraktari G, Lindqvist P, Dini FL, Henein MY (2021) Left atrial stiffness predicts cardiac events in patients with heart failure and reduced ejection fraction: the impact of diabetes. Clin Physiol Funct Imaging 41:208–216

    Article  PubMed  PubMed Central  Google Scholar 

  107. Park JJ, Park JH, Hwang IC, Park JB, Cho GY, Marwick TH (2020) Left atrial strain as a predictor of new-onset atrial fibrillation in patients with heart failure. JACC Cardiovasc Imaging 13:2071–2081

    Article  PubMed  Google Scholar 

  108. Pastore MC, Mandoli GE, Stefanini A, Iuliano MA, Saglietto A, Vigna M, C, et al (2023) Prognostic value of left atrial strain by speckle tracking echocardiography in acute and chronic heart failure: a meta-analysis and meta-regression analysis. Eur Heart J - Cardiovascular Imaging 24(Suppl 1):jead119.424

    Article  Google Scholar 

  109. Park JH, Hwang IC, Park JJ, Park JB, Cho GY (2021) Left atrial strain to predict stroke in patients with acute heart failure and sinus rhythm. J Am Heart Assoc 10:e020414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Venkateshvaran A, Tureli HO, Faxén UL, Lund LH, Tossavainen E, Lindqvist P (2022) Left atrial reservoir strain improves diagnostic accuracy of the 2016 ASE/EACVI diastolic algorithm in patients with preserved left ventricular ejection fraction: Insights from the KARUM haemodynamic database. Eur Heart J Cardiovasc Imaging 23:1157–1168

    Article  PubMed  PubMed Central  Google Scholar 

  111. Correale M, Magnesa M, Mazzeo P, Fortunato M, Tricarico L, Leopizzi A et al (2023) Left atrial functional remodeling in patients with chronic heart failure treated with Sacubitril/Valsartan. J Clin Med 12:1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mandoli GE, Pastore MC, Giannoni A, Benfari G, Dini FL, Rosa G et al (2023) Deformation imaging by strain in chronic heart failure over Sacubitril-Valsartan: a multicenter echocardiographic registry. ESC Heart Fail 10:846–857

    Article  PubMed  Google Scholar 

  113. Moon MG, Hwang IC, Lee HJ, Kim S-H, Yoon YE, Park J-B et al (2022) Reverse remodeling assessed by left atrial and ventricular strain reflects treatment response to Sacubitril/Valsartan. JACC Cardiovasc Imaging 15:1525–1541

    Article  PubMed  Google Scholar 

  114. Castrichini M, Manca P, Nuzzi V, Barbati G, De Luca A, Korcova R et al (2020) Sacubitril/valsartan induces global cardiac reverse remodeling in long-lasting heart failure with reduced ejection fraction: standard and advanced echocardiographic evidences. J Clin Med 9:906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Camilli M, Iannaccone G, Russo M, Meucci MC, Chiorazzo G, Natali R et al (2023) Early improvement of strain imaging parameters predicts long-term response to sacubitril/valsartan in patients with heart failure with reduced ejection fraction: an observational prospective study. Int J Cardiol 387:131110

    Article  PubMed  Google Scholar 

  116. Sun P, Cen H, Chen S, Chen X, Jiang W, Zhu H et al (2023) Left atrial dysfunction can independently predict exercise capacity in patients with chronic heart failure who use beta-blockers. BMC Cardiovasc Disord 23:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bytyçi I, Bajraktari G, Lindqvist P, Henein MY (2020) Improved left atrial function in CRT responders: a systematic review and meta-analysis. J Clin Med 9:298

    Article  PubMed  PubMed Central  Google Scholar 

  118. Radu AD, Zlibut A, Scarlatescu A, Cojocaru C, Bogdan S, Scafa-Udriște A et al (2023) Cardiac resynchronization therapy and left atrial remodeling: a novel insight? Biomedicines 11:1156

    Article  PubMed  PubMed Central  Google Scholar 

  119. Bouwmeester S, Mast TP, Keulards DCJ, de Lepper AGW, Herold IHF, Dekker LR, Prinzen FW et al (2022) Left atrial reverse remodeling predicts long-term survival after cardiac resynchronization therapy. J Echocardiogr 20:115–123

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Only one author (Ashraf M Anwar) organized the article and constructed its body. He also wrote all the contents.

Corresponding author

Correspondence to Ashraf M. Anwar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, A.M. Incremental diagnostic and prognostic utility of left atrial deformation in heart failure using speckle tracking echocardiography. Heart Fail Rev 29, 713–727 (2024). https://doi.org/10.1007/s10741-024-10392-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-024-10392-z

Keywords

Navigation