Skip to main content

Advertisement

Log in

Hyponatremia and takotsubo syndrome: a review of pathogenetic and clinical implications

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Hyponatremia is a common electrolyte abnormality with important prognostic and therapeutic implications. It might exert detrimental effects on various organ systems including the central nervous system (CNS), bone, and heart along with its potential association with poor quality of life. These adverse effects might be largely mediated through a variety of mechanisms including osmotic stress, dysfunctional transmembrane exchangers, and enhanced oxidative stress.

Interestingly, hyponatremia might also have an important association with takotsubo syndrome (TTS) that has been universally considered as a reversible form of cardiomyopathy usually emerging in response to various stressors. In this context, severe hyponatremia was previously reported to serve as a direct trigger of TTS evolution largely through its potential impact on CNS and heart. However, pathogenetic and clinical implications of hyponatremia still need to be thoroughly evaluated in patients with TTS. This paper aims to analyze the clinical features of published cases with TTS primarily triggered by hyponatremia and also aims to discuss the association between hyponatremia and TTS from a broader perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Yalta K, Yilmaztepe M, Zorkun C (2018) Left Ventricular dysfunction in the setting of takotsubo cardiomyopathy: a review of clinical patterns and practical implications. Card Fail Rev 4(1):14–20

    Article  PubMed  PubMed Central  Google Scholar 

  2. Santillo E, D'Onofrio P, Marini L et al (2022) Takotsubo syndrome presenting with left bundle branch block in an octogenarian. Is hyponatremia a pathogenic "common ground"? J Geriatr Cardiol 19(8):622–625

  3. Perera I, Rajapakse S, De Silva ST (2020) Severe hyponatremia-induced stress cardiomyopathy: a case report and review of literature. Case Rep Cardiol 31(2020):2961856. https://doi.org/10.1155/2020/2961856.PMID:32292605;PMCID:PMC7150708

    Article  Google Scholar 

  4. Yalta K, Yetkin E, Yalta T (2021) Systemic inflammation in patients with takotsubo syndrome: a review of mechanistic and clinical implications. Monaldi Arch Chest Dis 91(2). https://doi.org/10.4081/monaldi.2021.1718. PMID: 33728882

  5. Lyon AR, Citro R, Schneider B et al (2021) Pathophysiology of takotsubo syndrome: JACC state-of-the-art review. J Am Coll Cardiol 77(7):902–921

    Article  CAS  PubMed  Google Scholar 

  6. Dodoo SN, Agyemang-Sarpong A, Taka N et al (2022) Takotsubo cardiomyopathy in the setting of severe hyponatremia and beer potomania: a case report. Clin Case Rep 10(12):e6717. https://doi.org/10.1002/ccr3.6717

  7. Murguía-Aranda A, Castañón-González JA, Shuchleib-Cukiert M et al (2021) Takotsubo (stress cardiomyopathy) syndrome and inappropriate antidiuretic hormone secretion. Cir Cir 89(3):394–398

    PubMed  Google Scholar 

  8. Nakamura M, Nagamine T (2019) Severe lamotrigine-induced hyponatremia associated with takotsubo cardiomyopathy. Innov Clin Neurosci 16(7–08):32–34

    PubMed  PubMed Central  Google Scholar 

  9. Yasutomi M, Nakamura S, Makino Y et al (2020) A Case of Takotsubo cardiomyopathy with a rare transition pattern of left ventricular wall motion abnormality. Am J Case Rep 21:e926670. https://doi.org/10.12659/AJCR.926670

  10. Simsek EC, Emren SV, Ozdogan O (2018) Unusual combined cause of takotsubo cardiomyopathy: Hyponatremia and seizure. North Clin Istanb 6(3):304–307

    PubMed  PubMed Central  Google Scholar 

  11. Jha KK, Kumar M, Jha U, Desar S (2016) Takotsubo cardiomyopathy in a patient with SIADH. Int J Cardiol 225:342–344

    Article  PubMed  Google Scholar 

  12. Cecconi A, Franco E, de Agustín JA et al (2016) Hyponatremia-induced stress cardiomyopathy due to psychogenic polydipsia. Int J Cardiol 202:618–620

    Article  PubMed  Google Scholar 

  13. Patnaik S, Punjabi C, Nathan R et al (2015) Bland and broken hearted: a case of hyponatremia induced Tako-tsubo cardiomyopathy. Int J Cardiol 187:267–271

    Article  PubMed  Google Scholar 

  14. Chikata A, Omi W, Saeki T et al (2014) Repeated pacemaker dysfunction in a patient with recurrent takotsubo cardiomyopathy precipitated by hyponatremia. Int J Cardiol 170(3):443–444

    Article  PubMed  Google Scholar 

  15. Sagiv O, Vukelic S, Czak S et al (2012) Apical ballooning syndrome associated with isolated severe hyponatremia: case report and suggested pathophysiology. Rev Cardiovasc Med 13(4):e198-202

    Article  PubMed  Google Scholar 

  16. Santos M, Dias V, Meireles A et al (2011) Hyponatremia–an unusual trigger of takotsubo cardiomyopathy. Rev Port Cardiol 30(11):845–848

    Article  PubMed  Google Scholar 

  17. Kawano H, Matsumoto Y, Arakawa S et al (2011) Takotsubo cardiomyopathy in a patient with severe hyponatremia associated with syndrome of inappropriate antidiuretic hormone. Intern Med 50(7):727–732

    Article  PubMed  Google Scholar 

  18. AbouEzzeddine O, Prasad A (2010) Apical ballooning syndrome precipitated by hyponatremia. Int J Cardiol 145(1):e26–e29

    Article  PubMed  Google Scholar 

  19. Andreozzi F, Cuminetti G, Karmali R, Kamgang P (2018) Electrolyte disorders as triggers for takotsubo cardiomyopathy. Eur J Case Rep Intern Med 5(4):000760

    PubMed  PubMed Central  Google Scholar 

  20. Lemke DM, Hussain SI, Wolfe TJ et al (2008) Takotsubo cardiomyopathy associated with seizures. Neurocrit Care 9(1):112–117

    Article  PubMed  Google Scholar 

  21. Worthley MI, Anderson TJ (2007) Transient left ventricular apical ballooning syndrome following a hyponatraemic seizure. Int J Cardiol 115(3):e102–e104

    Article  PubMed  Google Scholar 

  22. Vriz O, Citro R, Martina S et al (2009) Tako-tsubo syndrome and hypovolemia. Monaldi Arch Chest Dis 72(3)

  23. Purdy A, Ren B (2018) A broken heart: a rare complication of hyponatremia. J Med Cases 9(5):147–150

  24. Vereeke J, Lefebvre C, Laterre PF et al (2021) Takotsubo syndrome associated with isolated hyponatremia: case report. In: J Integr Cardiol Open Access 4(1):1–3. https://doi.org/10.31487/j.jicoa.2021.01.07

  25. Kim JT, Seo SH, Lee SH et al (2015) Stress-induced cardiomyopathy associated with non-small cell lung cancer presenting as hyponatremia. Ewha Med J 38(2):90–93

    Article  Google Scholar 

  26. Yenigella S, Kaur N (2018) An usual trigger for stress cardiomyopathy. J Med Cases 9(12):386–389

    Article  Google Scholar 

  27. Hoorn EJ, Zietse R (2017) Diagnosis and Treatment of Hyponatremia: Compilation of the Guidelines. J Am Soc Nephrol 28(5):1340–1349

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schrier RW, Sharma S, Shchekochikhin D (2013) Hyponatraemia: more than just a marker of disease severity? Nat Rev Nephrol 9(1):37–50

    Article  CAS  PubMed  Google Scholar 

  29. Batta A, Gupta AK, Singal G et al (2022) Autoimmune polyendocrine syndrome II presenting paradoxically as Takotsubo cardiomyopathy: a case report and reappraisal of pathophysiology. Egypt Heart J 74(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bagnall T, Tow YR, Bunce N, Astroulakis Z (2021) Takotsubo cardiomyopathy associated with adrenal insufficiency in the context of long-term steroid use mimicking acute coronary syndrome. BMJ Case Rep 14(1):e234983

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vieira A, Batista B, de Abreu TT (2018) Iatrogenic takotsubo cardiomyopathy secondary to norepinephrine by continuous infusion for shock. Eur J Case Rep Intern Med 5(7):000894

    PubMed  PubMed Central  Google Scholar 

  32. Singh G, Manickam A, Sethuraman M, Rathod RC (2015) Takotsubo cardiomyopathy in a patient with pituitary adenoma and secondary adrenal insufficiency. Indian J Crit Care Med 19(12):731–734

    Article  PubMed  PubMed Central  Google Scholar 

  33. Murakami M, Matsushita N, Arai R et al (2012) Isolated adrenocorticotropin deficiency associated with delirium and takotsubo cardiomyopathy. Case Rep Endocrinol 2012:580481

    PubMed  PubMed Central  Google Scholar 

  34. Yalta K, Yalta T, Sivri N et al (2013) Copeptin and cardiovascular disease: a review of a novel neurohormone. Int J Cardiol 167(5):1750–1759

    Article  PubMed  Google Scholar 

  35. Gupta S, Goyal P, Idrees S et al (2018) Association of endocrine conditions with takotsubo cardiomyopathy: a comprehensive review. J Am Heart Assoc 7(19):e009003

    Article  PubMed  PubMed Central  Google Scholar 

  36. Aikins AO, Little JT, Rybalchenko N, Cunningham JT (2022) Norepinephrine innervation of the supraoptic nucleus contributes to increased copeptin and dilutional hyponatremia in male rats. Am J Physiol Regul Integr Comp Physiol 323(5):R797–R809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yalta K (2012) Serum copeptin/NT-proBNP ratio: a more reliable index of absolute endogenous stress and prognosis during the course of Tako-tsubo cardiomyopathy? Int J Cardiol 154(3):376–377

    Article  PubMed  Google Scholar 

  38. Wilson MF, Brackett DJ, Archer LT, Hinshaw LB (1980) Mechanisms of impaired cardiac function by vasopressin. Ann Surg 191(4):494–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boyle WA 3rd, Segel LD (1986) Direct cardiac effects of vasopressin and their reversal by a vascular antagonist. Am J Physiol 251(4 Pt 2):H734–H741

    CAS  PubMed  Google Scholar 

  40. Indrambarya T, Boyd JH, Wang Y et al (2009) Low-dose vasopressin infusion results in increased mortality and cardiac dysfunction following ischemia-reperfusion injury in mice. Crit Care 13:R98. https://doi.org/10.1186/cc7930

    Article  PubMed  PubMed Central  Google Scholar 

  41. De Picker L, Van Den Eede F, Dumont G et al (2014) Antidepressants and the risk of hyponatremia: a class-by-class review of literature. Psychosomatics 55(6):536–547

    Article  PubMed  Google Scholar 

  42. Whiskey E, Taylor D (2013) A review of the adverse effects and safety of noradrenergic antidepressants. J Psychopharmacol 27(8):732–739

    Article  PubMed  Google Scholar 

  43. Karim MR, Jawairia M, Rahman S et al (2011) Cocaine-associated acute severe hyponatremia. Clin Nephrol 75(Suppl 1):11–15 (PMID: 21269586)

    PubMed  Google Scholar 

  44. Patel A, Mirza N, Ali R et al (2022) Takotsubo cardiomyopathy after cocaine intoxication. Eur J Case Rep Intern Med 9(9):003457

    PubMed  PubMed Central  Google Scholar 

  45. Neil CJ, Chong CR, Nguyen TH, Horowitz JD (2012) Occurrence of Tako-Tsubo cardiomyopathy in association with ingestion of serotonin/noradrenaline reuptake inhibitors. Heart Lung Circ 21(4):203–205

    Article  CAS  PubMed  Google Scholar 

  46. Atzori M, Cuevas-Olguin R, Esquivel-Rendon E et al (2016) Locus ceruleus norepinephrine release: a central regulator of CNS spatio-temporal activation? Front Synaptic Neurosci 8:25

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rodovalho GV, Franci CR, Morris M, Anselmo-Franci JA (2006) Locus coeruleus lesions decrease oxytocin and vasopressin release induced by hemorrhage. Neurochem Res 31(2):259–266

    Article  CAS  PubMed  Google Scholar 

  48. Kounis NG, Mplani V, de Gregorio C, Koniari I (2023) Attack the ATAK; a challenging contemporary complex: pathophysiologic, therapeutic, and preventive considerations. Balkan Med J. https://doi.org/10.4274/balkanmedj.galenos.2023.2023-4-96. Epub ahead of print. PMID: 37218727

  49. Nahar N, Akhter N (2009) Effect of carvedilol on adrenaline-induced changes in serum electrolytes in rat. Bangladesh Med Res Counc Bull 35(3):105–109

    Article  PubMed  Google Scholar 

  50. Myburgh JA, Upton RN, Grant C, Martinez A (2002) The cerebrovascular effects of adrenaline, noradrenaline and dopamine infusions under propofol and isoflurane anaesthesia in sheep. Anaesth Intensive Care 30(6):725–733

    Article  CAS  PubMed  Google Scholar 

  51. Giuliani C, Peri A (2014) Effects of hyponatremia on the brain. J Clin Med 3(4):1163–1177

    Article  PubMed  PubMed Central  Google Scholar 

  52. Adrogué HJ, Madias NE (2000) Hyponatremia. N Engl J Med 342(21):1581–1589

    Article  PubMed  Google Scholar 

  53. Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol 587(Pt 10):2141–2149

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters. EAATs and VGLUTs Brain Res Rev 45(3):250–265

    Article  CAS  PubMed  Google Scholar 

  55. Tahsili-Fahadan P, Geocadin RG (2017) Heart-brain axis: effects of neurologic injury on cardiovascular function. Circ Res 120(3):559–572

    Article  CAS  PubMed  Google Scholar 

  56. Yalta K, Ozkan U, Yalta T, Yetkin E (2021) Cardiac myxoma as a potential trigger of takotsubo cardiomyopathy: a brief review on mechanistic and clinical perspectives. Monaldi Arch Chest Dis 92(1)

  57. Yalta K, Taylan G, Yalta T, Yetkin E (2020) Takotsubo cardiomyopathy in the setting of multiple sclerosis: a multifaceted phenomenon with important implications. Monaldi Arch Chest Dis 90(3)

  58. Hiestand T, Hänggi J, Klein C et al (2018) Takotsubo syndrome associated with structural brain alterations of the limbic system. J Am Coll Cardiol 71(7):809–811

    Article  PubMed  Google Scholar 

  59. Fujisawa H, Sugimura Y, Takagi H et al (2016) Chronic hyponatremia causes neurologic and psychologic impairments. J Am Soc Nephrol 27(3):766–780

    Article  CAS  PubMed  Google Scholar 

  60. Yalta K, Yetkin E, Yalta T (2021) Takotsubo cardiomyopathy: an obscure cause of emerging cardiovascular manifestations in the setting of Bickerstaff’s brainstem encephalitis. Neurol Sci 42(3):1181–1183

    Article  PubMed  Google Scholar 

  61. Kolar F, Cole WC, Ostadal B, Dhalla NS (1990) Transient inotropic effects of low extracellular sodium in perfused rat heart. Am J Physiol 259(3 Pt 2):H712–H719

    CAS  PubMed  Google Scholar 

  62. Mouallem M, Friedman E, Shemesh Y et al (1991) Cardiac conduction defects associated with hyponatremia. Clin Cardiol 14(2):165–168

    Article  CAS  PubMed  Google Scholar 

  63. Barsony J, Sugimura Y, Verbalis JG (2011) Osteoclast response to low extracellular sodium and the mechanism of hyponatremia-induced bone loss. J Biol Chem 286(12):10864–10875

    Article  CAS  PubMed  Google Scholar 

  64. Fibbi B, Marroncini G, Anceschi C et al (2021) Hyponatremia and oxidative stress. Antioxidants (Basel) 10(11):1768. https://doi.org/10.3390/antiox10111768

    Article  CAS  PubMed  Google Scholar 

  65. Barsony J, Manigrasso MB, Xu Q et al (2013) Chronic hyponatremia exacerbates multiple manifestations of senescence in male rats. Age (Dordr) 35(2):271–288

    Article  PubMed  Google Scholar 

  66. Oniki T, Teshima Y, Nishio S et al (2019) Hyponatremia aggravates cardiac susceptibility to ischaemia/reperfusion injury. Int J Exp Pathol 100(5–6):350–358

    Article  CAS  PubMed  Google Scholar 

  67. Manousek J, Kala P, Lokaj P et al (2021) Oxidative stress in takotsubo syndrome-is it essential for an acute attack? Indirect evidences support multisite impact including the calcium overload-energy failure hypothesis. Front Cardiovasc Med 8:732708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yalta K, Ozturk C, Gok M, Yalta T (2023) Takotsubo syndrome during breastfeeding: Further insights into prolactin and its implications. Rev Port Cardiol S0870–2551(23)00188–9. English, Portuguese. https://doi.org/10.1016/j.repc.2022.11.005. Epub ahead of print. PMID: 37019281

  69. Ciutac AM, Dawson D (2021) The role of inflammation in stress cardiomyopathy. Trends Cardiovasc Med 31(4):225–230

    Article  CAS  PubMed  Google Scholar 

  70. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2014) The role of oxidative stress during inflammatory processes. Biol Chem 395(2):203–230

    Article  CAS  PubMed  Google Scholar 

  71. Yalta K, Yilmaz MB, Yalta T et al (2020) Late versus early myocardial remodeling after acute myocardial infarction: a comparative review on mechanistic insights and clinical implications. J Cardiovasc Pharmacol Ther 25(1):15–26

    Article  PubMed  Google Scholar 

  72. Pongratz G, Straub RH (2014) The sympathetic nervous response in inflammation. Arthritis Res Ther 16(6):504

    Article  PubMed  PubMed Central  Google Scholar 

  73. Dhalla NS, Adameova A, Kaur M (2010) Role of catecholamine oxidation in sudden cardiac death. Fundam Clin Pharmacol 24(5):539–546

    Article  CAS  PubMed  Google Scholar 

  74. Dhalla NS (2018) Formation of aminochrome leads to cardiac dysfunction and sudden cardiac death. Circ Res 123(4):409–411

    Article  CAS  PubMed  Google Scholar 

  75. Yates JC, Dhalla NS (1975) Induction of necrosis and failure in the isolated perfused rat heart with oxidized isoproterenol. J Mol Cell Cardiol 7(11):807–816

    Article  CAS  PubMed  Google Scholar 

  76. Sethi R, Adameova A, Dhalla KS et al (2009) Modification of epinephrine-induced arrhythmias by N-acetyl-L-cysteine and vitamin E. J Cardiovasc Pharmacol Ther 14(2):134–142

    Article  CAS  PubMed  Google Scholar 

  77. Wang J, Zhou W, Yin X (2019) Improvement of hyponatremia is associated with lower mortality risk in patients with acute decompensated heart failure: a meta-analysis of cohort studies. Heart Fail Rev 24(2):209–217

    Article  CAS  PubMed  Google Scholar 

  78. Leier CV, Dei Cas L, Metra M (1994) Clinical relevance and management of the major electrolyte abnormalities in congestive heart failure: hyponatremia, hypokalemia, and hypomagnesemia. Am Heart J 128(3):564–574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Figures 2 and 3 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

K.Y.: substantial writing, concept, design, literature search, preparation of table and figures; O.P.: writing, concept, design, literature search, preparation of table and figures; M.G.: writing, concept, design, literature search, preparation of table and figures; E.Y.: writing, concept, design, literature search, preparation of table and figures. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Kenan Yalta.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalta, K., Palabıyık, O., Gurdogan, M. et al. Hyponatremia and takotsubo syndrome: a review of pathogenetic and clinical implications. Heart Fail Rev 29, 27–44 (2024). https://doi.org/10.1007/s10741-023-10344-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-023-10344-z

Keywords

Navigation