Skip to main content

Advertisement

Log in

MMP-9 and CD68+ cells are required for tissue remodeling in response to natural hydroxyapatite

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Large bone defects represent major clinical problems in the practice of reconstructive orthopedic and craniofacial surgery. The aim of this study was to examine, through immunohistochemistry approach, the involvement of MMP-9 and CD68+ cells during tissue remodeling in response to natural hydroxyapatite (HA) implanted in rat subcutaneous tissue. Before experimentation, forty animals were randomly distributed into two experimental groups: Group-I (Gen-Ox™ micro-granules) and Group-II (Gen-Ox™ macro-granules). Afterwards, the biopsies were collected after 10, 20, 30, and 60 days post-implantation. Our results showed that at 10 days, a low-renewal foreign body type granuloma formation was observed in most of the cases. Macrophage- and fibroblast-like cells were the predominant type of cells positively stained for MMP-9 in both groups. Once macrophage-like cells seemed to be the major source of MMP9, antibody against pan-CD68 epitope was used to correlate these findings. In agreement, MMP-9 and CD68+ cells were distributed at the periphery and the central region of the granuloma in all experimental periods, however no staining was observed in cell contacting to material. Besides macrophages, the lysosomal glycoprotein epitope recognized by CD68 antibodies can be expressed by mast cell granules and sometimes by fibroblasts. Taken together, our results suggest that xenogenic HA promotes extracellular matrix remodeling through induction of MMP-9 activity and presence of CD68+ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Accorsi-Mendonça T, Zambuzzi WF, Paiva KBS, Lauris JR, Cestari TM, Taga R, Granjeiro JM (2005) Expression of metalloproteinase 2 in the cell response to porous demineralized bovine bone matrix. J Mol Histol 36:311–316

    Article  PubMed  CAS  Google Scholar 

  • Accorsi-Mendonça T, Paiva KB, Zambuzzi WF, Cestari TM, Lara VS, Sogayar MC, Taga R, Granjeiro JM (2008a) Expression of matrix metalloproteinases-2 and -9 and RECK during alveolar bone regeneration in rat. J Mol Histol 39:201–208

    Article  PubMed  CAS  Google Scholar 

  • Accorsi-Mendonça T, Conz MB, Barros TC, Sena LA, Soares de GA, Granjeiro JM (2008b) Physicochemical characterization of two deproteinized bovine xenografts. Braz Oral Res 22:5–10

    Article  PubMed  Google Scholar 

  • Artzi Z, Tal H, Dayan D (2001) Porous bovine bone mineral in healing of human extraction sockets: 2. Histochemical observations at 9 months. J Periodontol 72:152–159

    Article  CAS  PubMed  Google Scholar 

  • Cestari TM, Granjeiro JM, de Assis GF, Garlet GP, Taga R (2009) Bone repair and augmentation using block of sintered bovine-derived anorganic bone graft in cranial bone defect model. Clin Oral Implants Res 20:340–350

    Article  PubMed  Google Scholar 

  • Coelho PG, Granjeiro JM, Romanos GE, Suzuki M, Silva NR, Cardaropoli G, Thompson VP, Lemons JE (2009) Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 88:579–596

    PubMed  Google Scholar 

  • Corotti MV, Zambuzzi WF, Paiva KB, Menezes R, Pinto LC, Lara VS, Granjeiro JM (2009) Immunolocalization of matrix metalloproteinases-2 and -9 during apical periodontitis development. Arch Oral Biol 54:764–771

    Article  CAS  PubMed  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392

    Article  CAS  PubMed  Google Scholar 

  • Delaissé JM, Engsig MT, Everts V, del Carmen Ovejero M, Ferreras M, Lund L, Vu TH, Werb Z, Winding B, Lochter A, Karsdal MA, Troen T, Kirkegaard T, Lenhard T, Heegaard AM, Neff L, Baron R (2000) Foged NT (2000) Proteinases in bone resorption: obvious and less obvious roles. Clin Chim Acta. 291:223–234

    Article  PubMed  Google Scholar 

  • Dormán G, Kocsis-Szommer K, Spadoni C, Ferdinandy P (2007) MMP inhibitors in cardiac diseases: an update. Recent Pat Cardiovasc Drug Discov 2:186–194

    Article  PubMed  Google Scholar 

  • Elenitsas R, Schuchter LM (1998) The role of the pathologist in the diagnosis of melanoma. Curr Opin Oncol 10:162–169

    Article  CAS  PubMed  Google Scholar 

  • Garrett AP, Wenham RM, Sheets EE (2002) Monsel’s solution: a brief history. J Low Genit Tract Dis 6:225–227

    Article  PubMed  Google Scholar 

  • Gonçalves F, Granjeiro JM, Cestari TM, Taga R, Oliveira RC, Zanetti RV, Zanetti AL (2005) Ridge Augmentation by using xenogenic materials: case report. Implant News 2:491–497

    Google Scholar 

  • Hannas AR, Pereira JC, Granjeiro JM, Tjäderhane L (2007) The role of matrix metalloproteinases in the oral environment. Acta Odontol Scand 65:1–13

    Article  CAS  PubMed  Google Scholar 

  • Heikkilä P, Teronen O, Moilanen M, Konttinen YT, Hanemaaijer R, Laitinen M, Maisi P, van der Pluijm G, Bartlett JD, Salo T, Sorsa T (2002) Bisphosphonates inhibit stromelysin-1 (MMP-3), matrix metalloelastase (MMP-12), collagenase-3 (MMP-13) and enamelysin (MMP-20), but not urokinase-type plasminogen activator, and diminish invasion and migration of human malignant and endothelial cell lines. Anti-Cancer Drug 13:245–254

    Article  Google Scholar 

  • Keibel A, Singh V, Sharma MC (2009) Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des 15:1949–1955

    Article  CAS  PubMed  Google Scholar 

  • Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10:7–19

    Article  CAS  PubMed  Google Scholar 

  • Kunisch E, Fuhrmann R, Roth A, Winter R, Lungershausen W, Kinne RW (2004) Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann Rheum Dis 63(7):774–784

    Article  CAS  PubMed  Google Scholar 

  • Laquerrier P, Grandjean-Laquerrier A, Addadi-Rebbah S, Jallot E, Laurent-Maquin D, Frayssinet P, Guenounou M (2004) MMP-2, MMP-9 and their inhibitors TIMP-2 and TIMP-1 production by human monocytes in vitro in the presence of different forms of hydroxyapatite particles. Biomaterials 5:2515–2524

    Article  CAS  Google Scholar 

  • Makowiski GS, Ramsby ML (2003) Zymographic analysis of latent and activated forms of matrix metalloproteinase-2 and -9 in synovial fluid: correlation to polymorphonuclear leukocyte infiltration and in response to infection. Clin Chim Acta 329:77–81

    Article  CAS  Google Scholar 

  • McCawley LJ, Matrisian LM (2001) Matrix Metalloproteinases: they are not just for matrix anymore! Curr Opin Cell Biol 13:534–540

    Article  CAS  PubMed  Google Scholar 

  • Mellonig JT (1999) Human Histologic evaluation of a bovine-derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent 20:19–29

    Google Scholar 

  • Menezes R, Bramante CM, Silva Paiva KB, Letra A, Carneiro E, Fernando Zambuzzi W, Granjeiro JM (2006) Receptor activator NFkappaB-ligand and osteoprotegerin protein expression in human periapical cysts and granulomas. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:404–409

    Article  PubMed  Google Scholar 

  • Morgan MP, Cooke MM, Christopherson PA, Westfall PR, McCarthy GM (2001) Calcium hydroxyapatite promotes mitogenesis and matrix metalloproteinase expression in human breast cancer cell lines. Mol Carcinog 32:111–117

    Article  CAS  PubMed  Google Scholar 

  • Muroski ME, Roycik MD, Newcomer RG, Van den Steen PE, Opdenakker G, Monroe HR, Sahab ZJ, Sang QX (2008) Matrix metalloproteinase-9/gelatinase B is a putative therapeutic target of chronic obstructive pulmonary disease and multiple sclerosis. Curr Pharm Biotechnol 9:34–46

    Article  CAS  PubMed  Google Scholar 

  • Nakata H, Ohtsuki T, Sisido M (2009) A protease inhibitor discovery method using fluorescence correlation spectroscopy with position-specific labeled protein substrates. Anal Biochem 390:121–125

    Article  CAS  PubMed  Google Scholar 

  • Nickoloff BJ, Griffiths CE (1989) The spindle-shaped cells in cutaneous Kaposi’s sarcoma. Histologic simulators include factor XIIIa dermal dendrocytes. Am J Pathol 135:793–800

    CAS  PubMed  Google Scholar 

  • Oliveira RC, Menezes R, Cestari TM, Taga EM, Taga R, Buzalaf MAR, Granjeiro JM (2004) Tissue response to a membrane of demineralized bovine cortical bone implanted in the subcutaneous tissue of rats. Braz Dent J 15:3–8

    Article  PubMed  Google Scholar 

  • Oliveira RC, Carneiro E, Cestari TM, Taga R, Granjeiro JM (2006) Dynamics of subcutaneous tissue response to the implantation of tetracycline-treated or untreated membrane of demineralized bovine cortical bone in rats. J Biomater Appl 21:167–178

    Article  PubMed  CAS  Google Scholar 

  • Paiva KB, Zambuzzi WF, Accorsi-Mendonça T, Taga R, Nunes FD, Sogayar MC, Granjeiro JM (2009) Rat forming incisor requires a rigorous ECM remodeling modulated by MMP/RECK balance. J Mol Histol 40:201–207

    Google Scholar 

  • Pilling D, Fan T, Huang D, Kaul B, Gomer RH (2009) Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One 4:e7475

    Article  PubMed  CAS  Google Scholar 

  • Rittenberg B, Partridge E, Baker G, Clokie C, Zohar R, Dennis JW, Tenenbaum HC (2005) Regulation of BMP-induced ectopic bone formation by Ahsg. J Orthop Res 23:653–662

    Article  CAS  PubMed  Google Scholar 

  • Stavropoulos A, Kostopoulos L, Nyengaard JR, Karring T (2003) Deproteinized bovine bone (Bio-Oss) and bioactive glass (Biogran) arrest bone formation when used as an adjunct to guided tissue regeneration (GTR): an experimental study in the rat. J Clin Periodontol 30:636–643

    Article  CAS  PubMed  Google Scholar 

  • Urist MR (1970) Quantitation of new bone formation in intramuscular implants of bone matrix in babbits. Clin Orthop 68:279–293

    CAS  PubMed  Google Scholar 

  • Valleala H, Hanemaaijer R, Mandelin J, Salminen A, Teronen O, Mönkkönen J, Konttinen YT (2003) Regulation of MMP-9 (gelatinase B) in activated human monocyte/macrophages by two different types of bisphosphonates. Life Sci 73:2413–2420

    Article  CAS  PubMed  Google Scholar 

  • van Heest A, Swiontkowski M (1999) Bone-Graft Substitutes. Lancet 353:28–29

    Article  Google Scholar 

  • Vasikaran SD (2001) Bisphosphonates: an overview with special reference to alendronate. Ann Clin Biochem 38:608–623

    Article  CAS  PubMed  Google Scholar 

  • Welker P, Grabbe J, Zuberbier T, Guhl S, Henz BM (2000) Mast cell and myeloid marker expression during early in vitro mast cell differentiation from human peripheral blood mononuclear cells. J Invest Dermatol 114(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Woessner JF, Nagase H (2000) Matrix Metalloproteinases and TIMPs. Oxford Univ Press, New York

    Google Scholar 

  • Zambuzzi WF, Oliveira RC, Alanis D, Menezes R, Letra A, Cestari TM, Taga R, Granjeiro JM (2005) Tissue response to porous microgranular bovine inorganic bone implanted in rat subcutaneous tissue. J Appl Oral Sci 13:382–386

    Article  Google Scholar 

  • Zambuzzi WF, Oliveira RC, Pereira FL, Cestari TM, Taga R, Granjeiro JM (2006a) Rat subcutaneous tissue response to macrogranular porous anorganic bovine bone graft. Braz Dent J 17:274–278

    Article  PubMed  Google Scholar 

  • Zambuzzi WF, Oliveira RC, Piozzi R, Cestari TM, Taga R, Buzalaf MAR, Granjeiro JM (2006b) Histological evaluation of acellular and demineralized fetal bovine bone in the subcutaneous of rats. Rev Bras Ortop 41:227–232

    Google Scholar 

  • Zambuzzi WF, Yano CL, Cavagis AD, Peppelenbosch MP, Granjeiro JM, Ferreira CV (2009a) Ascorbate-induced osteoblast differentiation recruits distinct MMP-inhibitors: RECK and TIMP-2. Mol Cell Biochem 322:143–150

    Article  CAS  PubMed  Google Scholar 

  • Zambuzzi WF, Paiva KB, Batista AC, Lara VS, Granjeiro JM (2009b) Immunohistochemical approach reveals involvement of inducible nitric oxide synthase in rat late development. J Mol Histol 40:235–240

    Google Scholar 

Download references

Acknowledgments

We would like to thank Tania M. Cestari and Danielle S. Ceolin for exceptional technician support. This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (W.F.Z., 08/53003-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Granjeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zambuzzi, W.F., Paiva, K.B.S., Menezes, R. et al. MMP-9 and CD68+ cells are required for tissue remodeling in response to natural hydroxyapatite. J Mol Hist 40, 301–309 (2009). https://doi.org/10.1007/s10735-009-9241-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-009-9241-2

Keywords

Navigation