Skip to main content
Log in

Reducing COPD readmissions through predictive modeling and incentive-based interventions

  • Published:
Health Care Management Science Aims and scope Submit manuscript

Abstract

This paper introduces a case study at a community hospital to develop a predictive model to quantify readmission risks for patients with chronic obstructive pulmonary disease (COPD), and use it to support decision making for appropriate incentive-based interventions. Data collected from the community hospital’s database are analyzed to identify risk factors and a logistic regression model is developed to predict the readmission risk within 30 days post-discharge of an individual COPD patient. By targeting on the high-risk patients, we investigate the implementability of the incentive policy which encourages patients to take interventions and helps them to overcome the compliance barrier. Specifically, the conditions and scenarios are identified for either achieving the desired readmission rate while minimizing the total cost, or reaching the lowest readmission rate under incentive budget constraint. Currently, such models are under consideration for a pilot study at the community hospital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. MedlinePlus (2017). https://medlineplus.gov/copd.html. Accessed April

  2. Mannino DM, Buist AS (2007) Global burden of COPD: risk factors, prevalence, and future trends. The Lancet 370(9589):765–773

    Article  Google Scholar 

  3. Ford ES et al (2013) COPD surveillance - United States, 1999-2011. Chest 144(1):284–305

    Article  Google Scholar 

  4. Centers for Disease Control and Prevention (CDC) (2012) Chronic obstructive pulmonary disease among adults - United States, 2011. Morb Mortal Wkly Rep 61(46):938–943

    Google Scholar 

  5. Smith DM et al (2000) Predicting nonelective hospital readmissions: a multisite study. J Clin Epidemiol 53:1113–1118

    Article  Google Scholar 

  6. Cao Z et al (2006) Frequent hospital readmissions for acute exacerbation of COPD and their associated factors. Respirology 11:188–195

    Article  Google Scholar 

  7. Almagro P et al (2006) Risk factors for hospital readmission in patients with chronic obstructive pulmonary disease. Respiration 73:311–317

    Article  Google Scholar 

  8. Chen YJ, Narsavage GL (2006) Factors related to chronic obstructive pulmonary disease readmission in Taiwan. West J Nurs Res 28(1):105–124

    Article  Google Scholar 

  9. Bahadori K, FitzGerald JM (2007) Risk factors of hospitalization and readmission of patients with COPD exacerbation & systematic review. Int J COPD 2(3):241–251

    Google Scholar 

  10. Zeng L et al (2014) Statistical models for hospital readmission prediction with application to chronic obstructive pulmonary disease (COPD) patients. In: Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management, Bali, Indonesia

  11. Hasan O et al (2010) Hospital readmission in general medicine patients: a prediction model. J Gen Intern Med 25(3):211–219

    Article  Google Scholar 

  12. Kansagara D et al (2011) Risk prediction models for hospital readmission - a systematic review. JAMA 306(15):1688–1698

    Article  Google Scholar 

  13. Zafari Z et al (2016) A systematic review of health economics simulation models of chronic obstructive pulmonary disease. Value in Health

  14. Make BJ et al (2015) A score to predict short-term risk of COPD exacerbations (SCOPEX). Int J Chron Obstruct Pulmon Dis 10:201–209

    Article  Google Scholar 

  15. Sanduzzi A et al (2014) COPD: adherence to therapy. Multidiscip Respir Med 9(1):1

    Article  Google Scholar 

  16. Brandeau ML et al (2004) Operations research and health care: a handbook of methods and applications. Springer, Berlin

    Google Scholar 

  17. Hall RW (2006) Patient flow: reducing delay in healthcare delivery. International series in operation research and management science. Springer, Berlin

    Book  Google Scholar 

  18. Yang H, Lee EK (2016) Healthcare analytics: from data to knowledge to healthcare improvement. Wiley, New Jersey

    Book  Google Scholar 

  19. Yih Y (2016) Handbook of healthcare delivery systems. CRC Press, Boca Raton

    Book  Google Scholar 

  20. Green LV (2005) Capacity planning and management in hospitals. In: Brandeau ML et al (eds) Operations Research and Health Care, pp 15–41

  21. Jacobson SH et al (2006) Discrete-event simulation of health care systems. In: Hall RW (ed) Patient flow: Reducing delay in healthcare delivery, pp 91:211–252

  22. Fomundam S, Herrmann JW (2007) A survey of queuing theory applications in healthcare. ISR Technical Report 2007-24, University of Maryland, College Park, MD

  23. Gupta D, Denton B (2008) Appointment scheduling in health care: Challenges and opportunities. IIE Trans 40(9):800–819

    Article  Google Scholar 

  24. Denton BT et al (2011) Medical decision making: open research challenges. IIE Trans Healthcare Syst Eng 1(3):161–167

    Article  Google Scholar 

  25. Wiler JL et al (2011) Review of modeling approaches for emergency department patient flow and crowding research. Acad Emerg Med 18(12):1371–1379

    Article  Google Scholar 

  26. Zhong X et al (2016) Discrete event simulation for primary care redesign: Review and a case study. In: Yang H, Lee EK (eds) Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, pp 399–426

  27. Prieto-Centurion V et al (2016) Interventions to reduce rehospitalizations after chronic obstructive pulmonary disease exacerbations. A systematic review. Ann Am Thorac Soc 11(3):417–424

    Article  Google Scholar 

  28. Simmering JE et al (2014) Identifying patients with COPD at high risk of readmission. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation 3(4):729–738

    Article  Google Scholar 

  29. Vuik SI et al (2016) Patient segmentation analysis offers significant benefits for integrated care and support. Health Aff 35(5):769–775

    Article  Google Scholar 

  30. Bourbeau J, Bartlett S J (2008) Patient adherence in COPD. Thorax 63(9):831–838

    Article  Google Scholar 

  31. Sharma G et al (2010) Outpatient follow-up visit and 30-day emergency department visit and readmission in patients hospitalized for chronic obstructive pulmonary disease. Arch Intern Med 170(18):1664–1670

    Article  Google Scholar 

  32. Puhan MA et al (2005) Respiratory rehabilitation after acute exacerbation of COPD may reduce risk for readmission and mortality – a systematic review. Respir Res 6(54):1–12

    Google Scholar 

  33. Bridle C et al (2005) Systematic review of the effectiveness of health behavior interventions based on the transtheoretical model. Psychol Health 20(3):283–301

    Article  Google Scholar 

  34. Painter JE et al (2008) The use of theory in health behavior research from 2000 to 2005: a systematic review. Ann Behav Med 35(3):358–362

    Article  Google Scholar 

  35. Mann BD, Onyekere C (2017) A holistic approach to reducing hospital readmission rates. Leadership, http://www.hfma.org/Leadership/Share_Your_Story_Blog/2017/October/A_Holistic_Approach_to_Reducing_Hospital_Readmission_Rates/, October 2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingshan Li.

Appendix: Proofs

Appendix: Proofs

Proof

of Proposition 2 In this case, the minimum cost is achieved when the resulting readmission probability equals to the upper bound \({P_{r}^{d}}\). Thus, the equations for αj will be:

$$\begin{array}{@{}rcl@{}} \alpha_{i}\beta_{i} + \alpha_{j}\beta_{j} &=& {P_{r}^{d}}, \\ \alpha_{i} + \alpha_{j} & =& 1 \end{array} $$

Plugging the second equation into the first one, we can obtain:

$$1 - \alpha_{j} = \frac{{P_{r}^{d}} - \alpha_{j}\beta_{j}}{\beta_{i}}, $$

which leads to

$$\beta_{i} - \alpha_{j}\beta_{i} = {P_{r}^{d}} - \alpha_{j}\beta_{j}. $$

Then itfollows that

$$\alpha_{j} = \frac{\beta_{i} - {P_{r}^{d}}}{\beta_{i} - \beta_{j}}. $$

Using this expression, the minimum cost is obtained by

$$\begin{array}{@{}rcl@{}} &&\min_{j\neq i} \alpha_{i}(C_{r}\beta_{i} + C_{i}) + \alpha_{j}(C_{r}\beta_{j} + C_{j})\\ && = \min_{j\neq i} \left( 1 - \frac{\beta_{i} - {P_{r}^{d}}}{\beta_{i} - \beta_{j}}\right)(C_{r}\beta_{i} + C_{i}) \\ &&\qquad\quad + \frac{\beta_{i} - {P_{r}^{d}}}{\beta_{i} - \beta_{j}}(C_{r}\beta_{j} + C_{j}) \\ && = \min_{j\neq i} \frac{{P_{r}^{d}} - \beta_{j}}{\beta_{i} - \beta_{j}}(C_{r}\beta_{i} + C_{i}) + \frac{\beta_{i} - {P_{r}^{d}}}{\beta_{i} - \beta_{j}}(C_{r}\beta_{j} + C_{j}) \\ && = \min_{j\neq i} \frac{1}{\beta_{i} - \beta_{j}}({P_{r}^{d}}C_{r}\beta_{i} + {P_{r}^{d}}C_{i} - C_{r}\beta_{i}\beta_{j} - C_{i}\beta_{j} \\ &&\qquad\quad + C_{r}\beta_{j}\beta_{i} + C_{j}\beta_{i} - {P_{r}^{d}}C_{r}\beta_{j} - {P_{r}^{d}}C_{j}) \\ && = \min_{j\neq i} \frac{1}{\beta_{i} - \beta_{j}}\left[P_{r}^{d}C_{r}(\beta_{i} - \beta_{j}) + {P_{r}^{d}}C_{i} - C_{i}\beta_{j}\right.\\ &&\qquad\quad \left. + C_{j}\beta_{i} - {P_{r}^{d}}C_{j}\right]\\ && = {P_{r}^{d}}C_{r} + \min_{j\neq i} \frac{1}{\beta_{i} - \beta_{j}}({P_{r}^{d}}(C_{i} - C_{j}) - C_{i}\beta_{j} + C_{j}\beta_{i}). \end{array} $$

Thus, the cost is minimized when the second term of the last equation is minimized. Therefore, selecting j from all k’s such that αk < αi to minimize the second term, the optimal solution is obtained.

$$\begin{array}{@{}rcl@{}} \alpha_{j} &=& \frac{\beta_{i} - {P_{r}^{d}}}{\beta_{i} - \beta_{j}} \text{ for} j = \operatorname*{arg\,min} \limits_{k \neq i \text{ s.t} \beta_{k} < \beta_{i}} \: \\ &&\qquad\left\{\frac{{P_{r}^{d}}(C_{i} - C_{k}) - C_{i}\beta_{k} + C_{k}\beta_{i}}{\beta_{i} - \beta_{k}}\right\}, \end{array} $$
(22)
$$\begin{array}{@{}rcl@{}} \alpha_{i} &=& 1 - \alpha_{j} \text{ for~} i = \operatorname*{arg\,min} \limits_{k} \: \{C_{r}\beta_{k} + C_{k}\}. \end{array} $$
(23)

Expression (10) follows by plugging the results from Eq. 22 into Eqs. 1 and 2.

Proof

of Proposition 4 Rewrite the problem as a standard form of linear programming by adding a non-negative slack variableδ:

$$\begin{array}{@{}rcl@{}} \min & \quad \beta_{b}\alpha_{b} + \beta_{h}\alpha_{h} + \beta_{c}\alpha_{c} + \beta_{n}\alpha_{n} \\ s.t. & \quad \delta + C_{b}\alpha_{b} + C_{h}\alpha_{h} + C_{c}\alpha_{c} + C_{n}\alpha_{n} = \widetilde{C}_{d}, \\ & \quad \alpha_{b} + \alpha_{h} + \alpha_{c} + \alpha_{n} = 1, \\ & \quad \delta \geq 0, \quad \alpha_{i} \geq 0 \quad \text{ for } i = b,h,c,n. \end{array} $$
(24)

Then the solution in Eq. 15 is a basic feasible solution of this problem, since it satisfies all constraints and only two variables are nonzero. To prove that such a solution is optimal, we need to check if it satisfies the optimality condition. Specifically, the basis matrix of the solution and its inverse are:

$$\begin{array}{@{}rcl@{}} B &=& \left( \begin{array}{cc} C_{i} & C_{j} \\ 1 & 1 \end{array}\right), \quad\quad B^{-1} = \frac{1}{C_{i} - C_{j}} \left( \begin{array}{cc} 1 & - C_{j} \\ -1 & C_{i} \end{array}\right). \end{array} $$

The reduced cost for other variable αk, ki, j, is

$$\begin{array}{@{}rcl@{}} & \beta_{k}-\left( \beta_{i}\;\beta_{j}\right) \dfrac{1}{C_{i} - C_{j}} \left( \begin{array}{cc} 1 & - C_{j} \\ -1 & C_{i} \end{array}\right) \left( \begin{array}{ll} {C_{k}}\\ {1}\\ \end{array}\right)\\ &=\beta_{k} - \dfrac{1}{C_{i} - C_{j}}(\beta_{i}C_{k} - \beta_{j}C_{k} - \beta_{i}C_{j} + \beta_{j}C_{i} ), \end{array} $$

and the reduced cost for δ is

$$\begin{array}{@{}rcl@{}} && 0 -\left( \beta_{i}\;\beta_{j}\right) \frac{1}{C_{i} - C_{j}} \left( \begin{array}{cc} 1 & - C_{j} \\ -1 & C_{i} \end{array}\right) \left( \begin{array}{c} {1}\\ {0}\\ \end{array}\right)= - \frac{\beta_{i} - \beta_{j}}{C_{i} - C_{j}}. \end{array} $$

The optimality condition implies that the reduced costs are non-negative. In other words, we need to check the signs of these reduced costs.

  • For αk with k s.t \(C_{k} \leq \widetilde {C}_{d}\), kj, the reduced cost for variable αk can be rewritten as

    $$\begin{array}{@{}rcl@{}} && \beta_{k} - \frac{1}{C_{i} - C_{j}}(\beta_{i}C_{k} - \beta_{j}C_{k} - \beta_{i}C_{j} + \beta_{j}C_{i} ) \\ && = \beta_{k} + \frac{1}{C_{i} - C_{j}}(- \beta_{i}C_{k} + \beta_{j}C_{k} + \beta_{i}C_{j} - \beta_{j}C_{i} \\ &&\quad -\beta_{i}C_{i} + \beta_{i}C_{i})\\ && =\beta_{k} - \beta_{i} + \frac{1}{C_{i} - C_{j}}(- \beta_{i}C_{k} + \beta_{j}C_{k} - \beta_{j}C_{i} \\ &&\quad + \beta_{i}C_{i})\\ && =\beta_{k} - \beta_{i} + \frac{(C_{i}-C_{k})(\beta_{i} - \beta_{j})}{C_{i} - C_{j}}\\ && =-(C_{i}-C_{k})\left\{\frac{\beta_{i} - \beta_{k}}{C_{i}-C_{k}} - \frac{\beta_{i} - \beta_{j}}{C_{i} - C_{j}}\right\}\\ && =-\frac{C_{i}-C_{k}}{\widetilde{C}_{d}-C_{i}}\left\{\frac{\beta_{i} - \beta_{k}}{C_{i}-C_{k}}(\widetilde{C}_{d}-C_{i})\right.\\ &&\quad \left. - \frac{\beta_{i} - \beta_{j}}{C_{i} - C_{j}}(\widetilde{C}_{d}-C_{i})\right\}\\ && =-\frac{C_{i}-C_{k}}{\widetilde{C}_{d}-C_{i}}\left[\left\{\frac{\beta_{i} - \beta_{k}}{C_{i}-C_{k}}(\widetilde{C}_{d}-C_{i}) + \beta_{i}\right\}\right.\\ &&\quad \left. - \left\{ \frac{\beta_{i} - \beta_{j}}{C_{i} - C_{j}}(\widetilde{C}_{d}-C_{i}) + \beta_{i}\right\}\right]. \end{array} $$

    Due to conditions of i and k, we have CiCk ≥ 0 and \(\widetilde {C}_{d}-C_{i} \leq 0\). In addition, the expression inside the square bracket is non-negative from the definitions of i and j. Therefore, the reduced cost of αk is non-negative.

  • For \(\alpha _{k^{\prime }}\) with ks.t \(C_{k^{\prime }} > \widetilde {C}_{d}\),ki, first, with some algebraic operations, we obtain

    $$\frac{\beta_{i} - \beta_{j}}{C_{i} - C_{j}}(\widetilde{C}_{d} - C_{i}) + \beta_{i} = \frac{\beta_{i} - \beta_{j}}{C_{i} - C_{j}}(\widetilde{C}_{d} - C_{j}) + \beta_{j}. $$

    Then, the reduce cost for \(\alpha _{k^{\prime }}\)is:

    $$\begin{array}{@{}rcl@{}} && \beta_{k^{\prime}} - \frac{1}{C_{i} - C_{j}}(\beta_{i}C_{k^{\prime}} - \beta_{j}C_{k^{\prime}} - \beta_{i}C_{j} + \beta_{j}C_{i} ) \\ && = \beta_{k^{\prime}} + \frac{1}{C_{i} - C_{j}}(- \beta_{i}C_{k^{\prime}} + \beta_{j}C_{k^{\prime}} + \beta_{i}C_{j} - \beta_{j}C_{i} \\ &&\quad + \beta_{j}C_{j} +- \beta_{j}C_{j})\\ && = \beta_{k^{\prime}} - \beta_{j} + \frac{1}{C_{i} - C_{j}}(- \beta_{i}C_{k^{\prime}} + \beta_{j}C_{k^{\prime}} + \beta_{i}C_{j}\\ &&\quad - \beta_{j}C_{j})\\ && = \beta_{k^{\prime}} - \beta_{j} + \frac{(C_{j}-C_{k^{\prime}})(\beta_{i} - \beta_{j})}{C_{i} - C_{j}}\\ && = (C_{k^{\prime}}-C_{j})\left\{\frac{\beta_{k^{\prime}} - \beta_{j}}{C_{k^{\prime}}-C_{j}} - \frac{\beta_{i} - \beta_{j}}{C_{i} - C_{j}}\right\}\\ && = \frac{C_{k^{\prime}}-C_{j}}{\widetilde{C}_{d}-C_{j}}\left\{\frac{\beta_{k^{\prime}} - \beta_{j}}{C_{k^{\prime}}-C_{j}}(\widetilde{C}_{d}-C_{j})\right.\\ &&\quad \left. - \frac{\beta_{i} - \beta_{j}}{C_{i} - C_{j}}(\widetilde{C}_{d}-C_{j})\right\}\\ && = \frac{C_{k^{\prime}}-C_{j}}{\widetilde{C}_{d}-C_{j}}\left[\left\{\frac{\beta_{k^{\prime}} - \beta_{j}}{C_{k^{\prime}}-C_{j}}(\widetilde{C}_{d}-C_{j}) + \beta_{j}\right\}\right.\\ &&\quad \left. - \left\{ \frac{\beta_{i} - \beta_{j}}{C_{i} - C_{j}}(\widetilde{C}_{d}-C_{j}) + \beta_{j}\right\}\right]. \end{array} $$

    Again, due to conditions of k and j, we have \(C_{k^{\prime }}-C_{j} \geq 0\) and \(\widetilde {C}_{d}-C_{j} \geq 0\). Moreover, the expression inside the square bracket is non-negative by definitions of i and j. Therefore, the reduced cost of \(\alpha _{k^{\prime }}\) is non-negative.

  • For the slack variable δ, from the condition that \(C_{m} > \widetilde {C}_{d}\), where \({m} = \underset {k}{\text {arg\,min}}\;\beta _{k}\), and from definitions of i and j, we obtain that \(\frac {\beta _{i} - \beta _{j}}{C_{i} - C_{j}}\ge 0\). Therefore, thereduced cost for δ is also non-negative.

In conclusion, based on the above arguments and the fact that the reduced costs for basic variables αi and αj are zero, all the reduced costs are non-negative. Therefore, the optimality condition is satisfied, which implies that Eq. 15 is the optimal condition. Then plugging (15) into Eqs. 1 and 2, the optimal solutions of the problem areobtained.

Proof

of Corollary 1 From Proposition 4, and conditions \(C_{h} \leq \widetilde {C}_{d} < C_{b}\)and βb = minkβk, the optimal solution can be derived directly as:

$$\begin{array}{@{}rcl@{}} \alpha_{b} &=& \frac{\widetilde{C}_{d} - C_{j}}{C_{b} - C_{j}}, \;\; \alpha_{j} = \frac{C_{b} - \widetilde{C}_{d}}{C_{b} - C_{j}}, \\ && \text{where } j = \underset{ j\;\in\;\{h,c,n\}} {\text{ arg\,min }} \frac{\beta_{b} - \beta_{j}}{C_{b} - C_{j}}(\widetilde{C}_{d} - C_{b}) + \beta_{b}. \end{array} $$
(25)

In the definition of index j, only the values of \(\frac {\beta _{b} - \beta _{j}}{C_{b} - C_{j}}\) are different. Since \(\frac {\beta _{b} - \beta _{j}}{C_{b} - C_{j}}\) is negative, we have

$$\begin{array}{@{}rcl@{}} j &=& \underset{ j\;\in\;\{h,c,n\}} {\text{arg\,min}} \frac{\beta_{b} - \beta_{j}}{C_{b} - C_{j}}(\widetilde{C}_{d} - C_{b}) + \beta_{b}\\ &=& \underset{ j\;\in\;\{h,c,n\}} {\text{ arg\,min }} \left|\frac{\beta_{b} - \beta_{j}}{C_{b} - C_{j}}\right|. \end{array} $$

Expression (18) follows by plugging the results from Eq. 25into Eqs. 1and 2.

Proof

of Corollary 3: From Proposition 4, and conditions \(C_{n} \leq \widetilde {C}_{d} < C_{c}\)and βb = minkβk, the optimal solution can be derived directly as:

$$\begin{array}{@{}rcl@{}} \alpha_{n} &=& \frac{\widetilde{C}_{d} - C_{i}}{C_{n} - C_{i}}, \;\; \alpha_{i} = \frac{C_{n} - \widetilde{C}_{d}}{C_{n} - C_{i}}, \\ &&\quad \text{ where } i = \underset{ i\;\in\;\{b,h,c\}} {\text{ arg\,min }} \frac{\beta_{n} - \beta_{i}}{C_{n} - C_{i}}(\widetilde{C}_{d} - C_{n}) + \beta_{n}. \end{array} $$

In the definition of index j,only the values of \(\frac {\beta _{n} - \beta _{j}}{C_{n} - C_{j}}\)are different. Therefore,

$$\begin{array}{@{}rcl@{}} i &=& \underset{ i\;\in\;\{b,h,c\}} {\mathrm{arg\,min}} \frac{\beta_{n} - \beta_{i}}{C_{n} - C_{i}}(\widetilde{C}_{d} - C_{n}) + \beta_{n}\\ &=& \underset{ i\;\in\;\{b,h,c\}} {\text{ arg\,min }} \frac{\beta_{n} - \beta_{i}}{C_{n} - C_{i}}. \end{array} $$

Note that Cn = 0.Then expression (18) follows by plugging the results of Eq. 25into Eqs. 1and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Lee, S., Zhao, C. et al. Reducing COPD readmissions through predictive modeling and incentive-based interventions. Health Care Manag Sci 22, 121–139 (2019). https://doi.org/10.1007/s10729-017-9426-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10729-017-9426-2

Keywords

Navigation