Skip to main content
Log in

Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

NIN-LIKE PROTEIN (NLP) is a conserved plant-specific transcription factor family and has been shown in several plant species to be a key player in regulating nitrogen (N) response. However, little is known about NLP gene family and their characteristics in maize (Zea mays L.). Here we report the identification and characterization of maize NLPs (ZmNLPs), and illustrate the family structure, phylogenetic properties, expression profiles, genetic differentiation between heterotic groups and N response. A total of 9 ZmNLPs from the maize genome were identified, belonging to two subgroups according to conserved domains and gene structure. Their expression profiles were different across tissues and almost all ZmNLPs constitutively expressed in eight different tissues at various developmental stages. Three ZmNLPs (ZmNLP3, 5 and 9) implementing the F ST higher than 0.25, differentiated very greatly between the Iowa Stiff Stalk Synthetic (SS) and Non-Stiff Stalk (NSS) heterotic groups. Quantitative real-time PCR (qPCR) results showed the expression levels of four ZmNLPs (ZmNLP4, 5, 6 and 8) were up-regulated over twofold in response to N treatment, ZmNLP4 and ZmNLP5 showed the largest up-regulation of greater than fivefold at 0.5 h after treatment which was even higher than the benchmark N-responsive gene (ZmNRT2.2) at the same time point, suggesting that they can be involved in the primary nitrogen response. As the first effort aimed to identify and characterize NLP transcription factor gene family in maize, our study also indicates ZmNLPs may have significant roles in maize N response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-8

    Article  PubMed  Google Scholar 

  • Bi YM, Meyer A, Downs GS, Shi X, El-Kereamy A, Lukens L, Rothstein SJ (2014) High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation. BMC Genomics 15:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57(3):426–435

    Article  CAS  PubMed  Google Scholar 

  • Chardin C, Girin T, Roudier F, Meyer C, Krapp A (2014) The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. J Exp Bot 65(19):5577–5587

    Article  CAS  PubMed  Google Scholar 

  • Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: at-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11(1):485

    Article  PubMed  PubMed Central  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222-230

    Google Scholar 

  • Guan P, Ripoll JJ, Wang R, Vuong L, Bailey-Steinitz LJ, Ye D, Crawford NM (2017) Interacting TCP and NLP transcription factors control plant responses to nitrate availability. Proc Natl Acad Sci USA 114(9):2419–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ, Hou Z, Loffler CM, Cooper M, Simmons CR (2014) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65(1):249–260

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Burden LM, Hurley JH (2000) Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J 19(20):5288–5299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297

    Article  PubMed  Google Scholar 

  • Humbert S, Subedi S, Cohn J, Zeng B, Bi YM, Chen X, Zhu T, McNicholas PD, Rothstein SJ (2013) Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genomics 14:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian W, Zhang D, Zhu F, Wang S, Zhu T, Pu X, Zheng T, Feng H, Lin H (2015) Nitrate reductase-dependent nitric oxide production is required for regulation alternative oxidase pathway involved in the resistance to Cucumber mosaic virus infection in Arabidopsis. Plant Growth Regul 77(1):99–107

    Article  CAS  Google Scholar 

  • Konishi M, Yanagisawa S (2011) The regulatory region controlling the nitrate-responsive expression of a nitrate reductase gene, NIA1, in Arabidopsis. Plant Cell Physiol 52(5):824–836

    Article  CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2013) Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun 4:1617

    Article  PubMed  Google Scholar 

  • Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM (2010) Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biol 11(12):R123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin F, Jiang L, Liu Y, Lv Y, Dai H, Zhao H (2014) Genome-wide identification of housekeeping genes in maize. Plant Mol Biol 86(4–5):543–554

    Article  CAS  PubMed  Google Scholar 

  • Liu KH, Niu Y, Konishi M, Wu Y, Du H, Sun Chung H, Li L, Boudsocq M, McCormack M, Maekawa S, Ishida T, Zhang C, Shokat K, Yanagisawa S, Sheen J (2017) Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks. Nature 545(7654):311–316

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Marchive C, Roudier F, Castaings L, Brehaut V, Blondet E, Colot V, Meyer C, Krapp A (2013) Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun 4:1713

    Article  PubMed  Google Scholar 

  • Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14(6):R55

    Article  PubMed  PubMed Central  Google Scholar 

  • Schauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402(6758):191–195

    Article  CAS  PubMed  Google Scholar 

  • Schauser L, Wieloch W, Stougaard J (2005) Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J Mol Evol 60(2):229–237

    Article  CAS  PubMed  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136(1):2483–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons M, Saha R, Guillard L, Clement G, Armengaud P, Canas R, Maranas CD, Lea PJ, Hirel B (2014) Nitrogen-use efficiency in maize (Zea mays L.): from ‘omics’ studies to metabolic modelling. J Exp Bot 65(19):5657–5671

    Article  CAS  PubMed  Google Scholar 

  • Sumimoto H, Kamakura S, Ito T (2007) Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Sci STKE 2007(401):re6

    Article  PubMed  Google Scholar 

  • Suzuki W, Konishi M, Yanagisawa S (2013) The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor. Plant Signal Behav 8(10):e25975

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-sEq. Nat Biotechnol 31(1):46–53

    Article  CAS  PubMed  Google Scholar 

  • van Heerwaarden J, Hufford MB, Ross-Ibarra J (2012) Historical genomics of North American maize. Proc Natl Acad Sci USA 109(31):12420–12425

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Okamoto M, Xing X, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132(2):556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu H, Wang S, Li H (2017) Genome-wide identification and expression analysis of the YUCCA gene family in soybean (Glycine max L.). Plant Growth Regul 81(2):265–275

    Article  CAS  Google Scholar 

  • Wright S (1977) Evolution and the genetics of populations. Variability within and among natural populations, vol 3. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Xie W, Wang G, Yuan M, Yao W, Lyu K, Zhao H, Yang M, Li P, Zhang X, Yuan J, Wang Q, Liu F, Dong H, Zhang L, Li X, Meng X, Zhang W, Xiong L, He Y, Wang S, Yu S, Xu C, Luo J, Li X, Xiao J, Lian X, Zhang Q (2015) Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc Natl Acad Sci USA 112(39):E5411-5419

    Article  Google Scholar 

  • Yan D, Easwaran V, Chau V, Okamoto M, Ierullo M, Kimura M, Endo A, Yano R, Pasha A, Gong Y, Bi YM, Provart N, Guttman D, Krapp A, Rothstein SJ, Nambara E (2016) NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat Commun 7:13179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamboni A, Astolfi S, Zuchi S, Pii Y, Guardini K, Tononi P, Varanini Z (2014) Nitrate induction triggers different transcriptional changes in a high and a low nitrogen use efficiency maize inbred line. J Integr Plant Biol 56(11):1080–1094

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank editorial reviewers for valuable comments that helped improve the quality of this manuscript. This work was supported by grant from the National Natural Science Foundation of China (No. 31401394) and Jiangsu Agriculture Science and Technology Innovation Fund [CX(14)2009].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Liu, Y., Jiang, L. et al. Genome-wide analysis of maize NLP transcription factor family revealed the roles in nitrogen response. Plant Growth Regul 84, 95–105 (2018). https://doi.org/10.1007/s10725-017-0324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-017-0324-x

Keywords

Navigation