Skip to main content

Advertisement

Log in

Nitrate reductase-dependent nitric oxide production is required for regulation alternative oxidase pathway involved in the resistance to Cucumber mosaic virus infection in Arabidopsis

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Nitrate reductase (NR), a key enzyme of nitrogen metabolism, catalyzes the reduction of nitrite to produce nitric oxide (NO). In this study, we investigated the role of NR-dependent NO in alleviating the cucumber mosaic virus (CMV)-caused damage in Arabidopsis thaliana (Arabidopsis). Quantitative real-time polymerase chain reaction analysis indicated that NR genes NIA1 and NIA2 transcripts were significantly increased by CMV infection in Arabidopsis. Further evidence showed that the nia1nia2 mutant and cPTIO-pretreated plants exhibited more serious symptoms (more reactive oxygen species accumulation, higher H2O2 content, malonaldehyde content, electrolyte leakage and transcription of CMV coat protein gene) compared with the wild-type (WT) after CMV infection. Analysis of putative molecular mechanism revealed that the expression of genes encoding pathogenesis-related 1 protein, pathogenesis-related 2 protein and alternative oxidase1a protein in nia1nia2 mutant were significantly decreased compared to the WT, and this phenomenon could be reversed by pretreatment with sodium nitroprusside (SNP). However, pretreatment with SNP could not effectively decrease the damage in aox1a mutant caused by CMV. Taken together, our results indicated that the NR-dependent NO was required for regulation the salicylic acid-mediated defense response and cyanide-resistant respiration pathway involved in the resistance to CMV infection, and alternative oxidase pathway played an important role in the defense response mediated by NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asai S, Yoshioka H (2009) Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Mol Plant Microbe Interact 22:619–629

    Article  CAS  PubMed  Google Scholar 

  • Bellin D, Asai S, Delledonne M, Yoshioka H (2013) Nitric oxide as a mediator for defense responses. Mol Plant Microbe Interact 26:271–277

    Article  CAS  PubMed  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59:21–39

    Article  CAS  PubMed  Google Scholar 

  • Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. BBA Bioenerg 1757:730–741

    Article  CAS  Google Scholar 

  • Cvetkovska M, Vanlerberghe GC (2012) Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytol 195:32–39

    Article  CAS  PubMed  Google Scholar 

  • Cvetkovska M, Dahal K, Alber NA, Jin C, Cheung M, Vanlerberghe GC (2014) Knockdown of mitochondrial alternative oxidase induces the ‘stress state’ of signaling molecule pools in Nicotiana tabacum, with implications for stomatal function. New Phytol 203:449–461

    Article  CAS  PubMed  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Filippou P, Antoniou C, Yelamanchili S, Fotopoulos V (2012) NO loading: efficiency assessment of five commonly used application methods of sodium nitroprusside in Medicago truncatula plants. Plant Physiol Biochem 60:115–118

    Article  CAS  PubMed  Google Scholar 

  • Finnegan PM, Soole KL, Umbach AL (2004) Plant mitochondria: from genome to function. In: Day D, Millar AH, Whelan J (eds) Alternative mitochondrial electron transport proteins in higher plants, vol 17. Kluwer Academic, Dordrecht, pp 163–230

    Google Scholar 

  • Fu LJ, Shi K, Gu M, Zhou YH, Dong DK, Liang WS, Song FM, Yu JQ (2010) Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato-Tobacco mosaic virus interaction. Mol Plant Microbe Interact 23:39–48

    Article  PubMed  Google Scholar 

  • Fu FQ, Zhang DW, Deng XG, Li JY, Peng XJ, Tang H, Lin HH (2014) Role of plastid signals in modulating Arabidopsis responses to Cucumber mosaic virus. Plant Growth Regul. doi:10.1007/s10725-014-9979-8

    Google Scholar 

  • Ghosh SK, Ghosh S (2010) Production of nitric oxide in host-virus interaction. Plant Signal Behav 5:668–676

    Article  PubMed Central  PubMed  Google Scholar 

  • Gupta KJ, Shah JK, Brotman Y, Jahnke K, Willmitzer L, Kaiser WM, Bauwe H, Igamberdiev AU (2012) Inhibition of aconitase by nitric oxide leads to induction of the alternative oxidase and to a shift of metabolism towards biosynthesis of amino acids. J Exp Bot 63:1773–1784

    Article  CAS  PubMed  Google Scholar 

  • Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST, Cristescu SM, Harren FJ, Bauwe H, Fernie AR (2013) The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. J Exp Bot 64:553–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F (2004) Nitric oxide represses the Arabidopsis floral transition. Science 305:1968–1971

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Shah JK, Igamberdiev AU (2013) The role of nitric oxide and hemoglobin in plant development and morphogenesis. Physiol Plant 148:457–469

    Article  CAS  PubMed  Google Scholar 

  • Huang X, von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923

    Article  CAS  PubMed  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci USA 97:8849–8855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolbert Z, Bartha B, Erdei L (2008) Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia. J Plant Physiol 165:967

    Article  CAS  PubMed  Google Scholar 

  • Lei T, Feng H, Sun X, Dai QL, Zhang F, Liang HG, Lin HH (2010) The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regul 60:35–42

    Article  CAS  Google Scholar 

  • Li JY, Deng XG, Chen LJ, Fu FQ, Pu XJ, Xi DH, Lin HH (2015) Involvement of PHYB in resistance to Cucumber mosaic virus in Nicotiana tabacum. Plant Growth Regul. doi:10.1007/s10725-015-0032-3

    Google Scholar 

  • Lindermayr C, Sell S, Müller B, Leister D, Durner J (2010) Redox regulation of the NPR1–TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Modolo LV, Augusto O, Almeida IM, Magalhaes JR, Salgado I (2005) Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. FEBS Lett 579:3814–3820

    Article  CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35

    Article  CAS  Google Scholar 

  • Sun A, Nie S, Xing D (2012) Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides. Plant Physiol 160:1081–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun ZH, Zhou YH, Shi K, Li X, Zhang GQ, Xia XJ, Chen ZX, Yu JQ (2013) The role of hydrogen peroxide and nitric oxide in the induction of plant-encoded RNA-dependent RNA polymerase 1 in the BASAL DEFENSE against Tobacco Mosaic Virus. PLoS One 8:e76090

    Article  PubMed Central  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Zhang DW, Yuan S, Zhu F, Xu F, Fu FQ, Wang SX, Lin HH (2014) Plastid signals induce ALTERNATIVE OXIDASE expression to enhance the cold stress tolerance in Arabidopsis thaliana. Plant Growth Regul 74:275–283

    Article  CAS  Google Scholar 

  • Vanlerberghe GC (2013) Alternative oxidase: a mitochondrial respiratory pathway to maintain metabolic and signaling homeostasis during abiotic and biotic stress in plants. Int J Mol Sci 14:6805–6847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villarreal NM, Martínez GA, Civello PM (2009) Influence of plant growth regulators on polygalacturonase expression in strawberry fruit. Plant Sci 176:749–757

    Article  CAS  Google Scholar 

  • Vitor S, Duarte G, Saviani E, Vincentz M, Oliveira H, Salgado I (2013) Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae. Planta 238:475–486

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Zhang DW, Zhu F, Tang H, Lv X, Cheng J, Xie HF, Lin HH (2012) A novel role for cyanide in the control of cucumber (Cucumis sativus L.) seedlings response to environmental stress. Plant Cell Environ 35:1983–1997

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Sakihama Y, Takahashi S (1999) An alternative pathway for nitric oxide production in plants: new features of an old enzyme. Trends Plant Sci 4:128–129

    Article  PubMed  Google Scholar 

  • Yamasaki H, Shimoji H, Ohshiro Y, Sakihama Y (2001) Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide 5:261–270

    Article  CAS  PubMed  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao MG, Tian QY, Zhang WH (2007a) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao X, She X, Yu W, Liang X, Du Y (2007b) Effects of oligochitosans on tobacco cells and role of endogenous nitric oxide burst in the resistance of tobacco to tobacco mosaic virus. J Plant Pathol 89:55–65

    CAS  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Wenhao Zhang for kindly providing seeds of nia1nia2 plants. This work was supported by the National Basic Research Program of China (973 Program) (2015CB150100), the National Natural Science Foundation of China (31470342, 31400211, 91417305), the Doctoral Foundation of the Ministry of Education (20120181130008, 20110181110059) and the Sichuan Natural Science Foundation (2015JY0101, 2015JY0223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-hui Lin.

Additional information

Wei Jian and Da-wei Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, W., Zhang, Dw., Zhu, F. et al. Nitrate reductase-dependent nitric oxide production is required for regulation alternative oxidase pathway involved in the resistance to Cucumber mosaic virus infection in Arabidopsis. Plant Growth Regul 77, 99–107 (2015). https://doi.org/10.1007/s10725-015-0040-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0040-3

Keywords

Navigation