Skip to main content
Log in

The effect of brassinosteroids on the morphology, development and yield of field-grown maize

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The response of two field-grown inbred lines of maize (Zea mays L.) and their F1 hybrid to the application of 10−8–10−14 M solutions of 24-epibrassinolide or synthetic androstane analogue of castasterone in V3/4 and V6/7 developmental stages was followed during the vegetative and early reproductive phases of plant development. Brassinosteroids (BRs) significantly affected (either positively or negatively, depending on the genotype and the developmental stage they were applied) the height of plants during the early weeks after their application, but not the final plant height nor the number of leaves. Spraying of plants with BRs in V3/4 developmental stage usually also increased the length of the 7th to 10th leaf, whereas the application in V6/7 developmental stage had the opposite effect. The beginning of the reproductive phase of plant development and the course of flowering was strongly influenced by the application of BRs. Treatment of plants in V3/4 stage delayed and treatment of plants in V6/7 stage advanced the dates of anthesis and silking, regardless of the type of BR used, its concentration or plant genotype. The influence of BRs on the development of the secondary ear was the least pronounced in the F1 hybrid; in both inbred lines it strongly depended on the concentrations of BRs used. Various yield parameters were also affected by treatment of plants with BRs, but this effect depended on the developmental stage during which the application of BRs occured, the plant genotype, the type of BR and its concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali B, Hayat S, Ahmad A (2007) 28-homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environ Exp Bot 59:217–223. doi:10.1016/j.envexpbot.2005.12.002

    Article  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008a) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159. doi:10.1016/j.envexpbot.2007.07.014

    Article  CAS  Google Scholar 

  • Ali Q, Athar HR, Ashraf M (2008b) Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul 56:107–116. doi:10.1007/s10725-008-9290-7

    Article  CAS  Google Scholar 

  • Amzallag GN (2002) Brassinosteroids as metahormones: evidence for their specific influence during the critical period in Sorghum development. Plant Biol 4:656–663. doi:10.1055/s-2002-37397

    Article  CAS  Google Scholar 

  • Arora N, Bhardwaj R, Sharma P, Arora HK (2008) Effect of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiol Plant 30:833–839. doi:10.1007/s11738-008-0188-9

    Article  CAS  Google Scholar 

  • Bolaños J, Edmeades GO (1996) The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res 48:65–80. doi:10.1016/0378-4290(96)00036-6

    Article  Google Scholar 

  • Cerrana R, Lado P, Anastasia M, Ciuffreda P, Allevi P (1984) Regulating effects of brassinosteroids and of sterols on growth and H+ secretion in maize roots. J Plant Physiol 114:221–225

    Google Scholar 

  • Clouse SD (2008) The molecular intersection of brassinosteroid-regulated growth and flowering in Arabidopsis. Proc Natl Acad Sci USA 105:7345–7346. doi:10.1073/pnas.0803552105

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essentials regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451. doi:10.1146/annurev.arplant.49.1.427

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134:1841–1850. doi:10.1242/dev.02866

    Article  Google Scholar 

  • Fariduddin Q, Ahmad A, Hayad S (2003) Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. Photosynthetica 41:307–310. doi:10.1023/B:PHOT.0000011968.78037.b1

    Article  CAS  Google Scholar 

  • Fariduddin Q, Hasan SAS, Ali B, Hayat S, Ahmad A (2008) Effect of modes of application of 28-homobrassinolide on mung bean. Turk J Biol 32:17–21

    CAS  Google Scholar 

  • Farooq M, Wahid A, Basra SMA, Din I (2009) Improving water relations and gas exchange with brassinosteroids in rice under drought stress. J Agron Crop Sci 195:262–269. doi:10.1111/j.1439-037X.2009.00368.x

    Article  CAS  Google Scholar 

  • Fedina EO, Karimova FG, Tarchevsky IA, Toropygin IY, Khripach VA (2008) Effect of epibrassinolide on tyrosine phosphorylation of the Calvin cycle enzymes. Russ J Plant Physiol 55:193–200. doi:10.1134/S1021443708020052

    CAS  Google Scholar 

  • Fujii S, Saka H (2001) Distribution of assimilates to each organ in rice plants exposed to low temperature at the ripening stage, and the effect of brassinolide on the distribution. Plant Product Sci 4:136–144

    Article  CAS  Google Scholar 

  • Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457. doi:10.1111/j.1365-3040.2005.01481.x

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Ahmad A (2003) Soaking seeds of Lens culinaris with 28-homobrassinolide increased nitrate reductase activity and grain yield in India. Ann Appl Biol 143:121–124. doi:10.1111/j.1744-7348.2003.tb00276.x

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A, Mobin M, Hussain A, Fariduddin Q (2000) Photosynthetic rate, growth and yield of mustard plants sprayed with 28-homobrassinolide. Photosynthetica 38:469–471. doi:10.1023/A:1010954411302

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A, Hussain A, Mobin M (2001a) Growth of wheat seedlings raised from the grains treated with 28-homobrassinolide. Acta Physiol Plant 23:27–30. doi:10.1007/s11738-001-0018-9

    Article  CAS  Google Scholar 

  • Hayat S, Ahmad A, Mobin M, Fariduddin Q, Azam ZM (2001b) Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. Photosynthetica 39:111–114. doi:10.1023/A:1012456205819

    Article  CAS  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41. doi:10.1016/jenvexpbot.2006.06.002

    Article  CAS  Google Scholar 

  • Hnilička F, Hniličková H, Martinková J, Bláha L (2007) The influence of drought and the application of 24-epibrassinolide on the formation of dry matter and yield in wheat. Cereal Res Commun 35:457–460. doi:10.1556/CRC.35.2007.2.73

    Article  Google Scholar 

  • Janeczko A, Filek W, Biesaga-Kościelniak J, Marcińska I, Janeczko Z (2003) The influence of animal sex hormones on the induction of flowering in Arabidopsis thaliana: comparison with the effect of 24-epibrassinolide. Plant Cell Tiss Organ Cult 72:147–151. doi:10.1023/A:1022291718398

    Article  CAS  Google Scholar 

  • Janeczko A, Hura K, Skoczowski A, Idzik I, Biesaga-Kościelniak J, Niemczyk E (2009) Temperature-dependent impact of 24-epibrassinolide on the fatty acid composition and sugar content in winter oilseed rape callus. Acta Physiol Plant 31:71–79. doi:10.1007/s11738-008-0202-2

    Article  CAS  Google Scholar 

  • Kang Y, Guo S, Li J, Duan J (2007) Effects of 24-epibrassinolide on antioxidant system in cucumber seedling roots under hypoxia stress. Agric Sci China 6:281–289. doi:10.1016/S1671-2927(07)60046-7

    CAS  Google Scholar 

  • Kartal G, Temel A, Arican E, Gozukirmizi N (2009) Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regul 58:261–267. doi:10.1007/s10725-009-9374-z

    Article  CAS  Google Scholar 

  • Kęsy J, Trzaskalska A, Galoch E, Kopcewicz J (2003) Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil. Biol Plant 47:597–600. doi:10.1023/B:BIOP.0000041069.27805.89

    Article  Google Scholar 

  • Khripach V, Zhabinskii V, deGroot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86:441–447. doi:10.1006/anbo.2000.1227

    Article  CAS  Google Scholar 

  • Khripach VA, Zhabinskii VN, Khripach NB (2003) New practical aspects of brassinosteroids and results of their ten-year agricultural use in Russia and Belarus. In: Hayat S, Ahmad A (eds) Brassinosteroids: bioactivity and crop productivity. Kluwer, Dordrecht-Boston-London, pp 189–230

    Google Scholar 

  • Kohout L (1994) New method for preparation of brassinosteroids. Coll Czech Chem Commun 59:457–460. doi:10.1135/cccc19940457

    Article  CAS  Google Scholar 

  • Li KR, Wang HH, Han G, Wang QJ, Fan J (2008) Effect of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water stress. New Forests 35:255–266. doi:10.1007/s11056-007-9075-2

    Article  Google Scholar 

  • Mazorra LM, Núñez M, Hechavarria M, Coll F, Sánchez-Blanco MJ (2002) Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol Plant 45:593–596. doi:10.1023/A:1022390917656

    Article  CAS  Google Scholar 

  • Núñez MV, Robaina CR, Coll FM (2003) Synthesis and practical applications of brassinosteroid analogs. In: Hayat S, Ahmad A (eds) Brassinosteroids: bioactivity and crop productivity. Kluwer, Dordrecht-Boston-London, pp 87–118

    Google Scholar 

  • Özdemir F, Bor M, Demiral T, Türkan I (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul 42:203–211. doi:10.1023/B:GROW.0000026509.25995.13

    Article  Google Scholar 

  • Ramraj VM, Vyas BN, Godrej NB, Mistry KB, Swami BN, Singh N (1997) Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. J Agric Sci 128:405–413

    Article  CAS  Google Scholar 

  • Rao AAR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids—a new class of phytohormones. Curr Sci 82:1239–1245

    Google Scholar 

  • Ritchie SW, Hanway JJ, Benson GO (1993) How a corn plant develops. Spec Rep No 48. Iowa State University Extension, Ames

    Google Scholar 

  • Sairam RK (1994a) Effect of homobrassinolide application on metabolic activity and grain yield of wheat under normal and water-stress condition. J Agron Crop Sci 173:11–16

    Article  CAS  Google Scholar 

  • Sairam RK (1994b) Effect of homobrassinolide application on plant metabolism and grain yield under irregated and moisture-stress conditions of two wheat varieties. Plant Growth Regul 14:173–181. doi:10.1007/BF00025220

    Article  CAS  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288. doi:10.1007/s00344-033-0062-3

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz M, Ashraf M, Athar HR (2008) Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum J.)? Plant Growth Regul 55:51–64. doi:10.1007/s10725-008-9262-y

    Article  CAS  Google Scholar 

  • Sharma P, Bhardwaj R (2007) Effect of 24-epibrassinolide on seed germination, seedling growth and heavy metal uptake in Brassica juncea L. Gen Appl Plant Physiol 33:59–73

    CAS  Google Scholar 

  • Singh I, Shono M (2005) Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul 47:111–119. doi:10.1007/s10725-005-3252-0

    Article  CAS  Google Scholar 

  • Swamy KN, Rao SSR (2008) Influence of 28-homobrassinolide on growth, photosynthesis metabolite and essential oil content on geranium (Pelargonium graveolens (L.) Herit). Amer J Plant Physiol 3:173–179

    Article  CAS  Google Scholar 

  • Takematsu T, Takeuchi Y (1989) Effect of brassinosteroids on growth and yields of crops. Proc Japan Acad 65:149–152. doi:10.2183/pjab.65.149

    Article  CAS  Google Scholar 

  • Torres-Ruiz BL, Espinosa-Calderón A, Mendoza-Rodríguez M, Rodríguez de la OJL, Irizar-Garza MB, Castellanos-Ruiz JS (2007) Effecto de brasinoesteroides en híbridos de maíz androestériles y fértiles. Agronomía Mesoamericana 18:155–162

    Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34. doi:10.1111/j.1365-313X.2005.02358.x

    Article  CAS  PubMed  Google Scholar 

  • Vardhini BV, Rao SSR (1998) Effect of brassinosteroids on growth, metabolite content and yield of Arachis hypogaea. Phytochemistry 48:927–930. doi:10.1016/S0031-9422(97)00710-3

    Article  CAS  Google Scholar 

  • Vardhini BV, Rao SSR (2003) Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul 41:25–31. doi:10.1023/A:1027303518467

    Article  CAS  Google Scholar 

  • Vlašánková E, Kohout L, Klemš M, Eder J, Reinöhl V, Hradilík J (2009) Evaluation of biological activity of new synthetic brassinolide analogs. Acta Physiol Plant 31:987–993. doi:10.007/s11738-009-0314-3

    Article  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogués S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 399:1135–1143. doi:10.1093/jxb/erh124

    Article  Google Scholar 

  • Yu X, Li L, Li L, Guo M, Chory J, Yin Y (2008) Modulation of brassinosteroid-regulated gene expression by jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci USA 105:7618–7623. doi:10.1073/pnas.0802254105

    Article  CAS  PubMed  Google Scholar 

  • Zhao YJ, Chen J (2003) Studies on physiological action and application of 24-epibrassinolide in agriculture. In: Hayat S, Ahmad A (eds) Brassinosteroids: bioactivity and crop productivity. Kluwer, Dordrecht-Boston-London, pp 159–170

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Jaroslav Poruba from the CEZEA Breeding Station in Čejč, Czech Republic, for the supply of maize kernels, to our students Jana Honnerová, Monika Benešová, Lenka Fridrichová and Zuzana Novosadová for their help with the measurements of yield and growth parameters, and to the technical personnel of the Genetical Garden of the Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, for taking care of the experimental plants. This study was supported by grants No. KJB601110611 of the Grant Agency of the Academy of Sciences of the Czech Republic, and No. MSM0021620858 from the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Holá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holá, D., Rothová, O., Kočová, M. et al. The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regul 61, 29–43 (2010). https://doi.org/10.1007/s10725-010-9446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9446-0

Keywords

Navigation