Skip to main content
Log in

Reactive oxygen species localization in roots of Arabidopsis thaliana seedlings grown under phosphate deficiency

  • Original Paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Arabidopsis plants responding to phosphorus (P) deficiency increase lateral root formation and reduce primary root elongation. In addition the number and length of root hairs increases in response to P deficiency. Here we studied the patterns of radical oxygen species (ROS) in the roots of Arabidopsis seedlings cultured on media supplemented with high or low P concentration. We found that P availability affected ROS distribution in the apical part of roots. If plants were grown on high P medium, ROS were located in the root elongation zone and quiescent centre. At low P ROS were absent in the elongation zone, however, their synthesis was detected in the primary root meristem. The proximal part of roots was characterized by ROS production in the lateral root primordia and in elongation zones of young lateral roots irrespective of P concentration in the medium. On the other hand, plants grown at high or low P differed in the pattern of ROS distribution in older lateral roots. At high P, the elongation zone was the primary site of ROS production. At low P, ROS were not detected in the elongation zone. However, they were present in the proximal part of the lateral root meristem. These results suggest that P deficiency affects ROS distribution in distal parts of Arabidopsis roots. Under P-sufficiency ROS maximum was observed in the elongation zone, under low P, ROS were not synthesized in this segment of the root, however, they were detected in the apical root meristem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DCF:

2′,7′-Dichlorofluorescein

DCFH:

2′,7′-Dichlorodihydrofluorescein

NBT:

Nitroblue tetrazolium

QC:

Quiescent centre

ROS:

Radical oxygen species

References

  • Bielski BHJ, Shine GG, Bajuk S (1980) Reduction of nitro blue tetrazolium by CO2 and O2 radicals. J Phys Chem 84:830–833. doi:10.1021/j100445a006

    Article  CAS  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588. doi:10.1093/jxb/erj045

    Article  PubMed  CAS  Google Scholar 

  • Dunand C, Crèvecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis thaliana roots and their influence on root development: possible interactions with peroxidases. New Phytol 174:332–341. doi:10.1111/j.1469-8137.2007.01995.x

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Mledema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446. doi:10.1038/nature01485

    Article  PubMed  CAS  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    PubMed  CAS  Google Scholar 

  • Gadea J, Conejero V, Vera P (1999) Developmental regulation of a cytosolic ascorbate peroxidases gene from tomato plants. Mol Gen Genet 262:212–219. doi:10.1007/s004380051077

    Article  PubMed  CAS  Google Scholar 

  • Green MA, Fry SC (2005) Apoplastic degradation of ascorbate: Novel enzymes and metabolites permeating the cell wall. Plant Biosyst 139:2–7. doi:10.1080/11263500500056849

    Google Scholar 

  • Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot (Lond) 94:323–332. doi:10.1093/aob/mch156

    Article  CAS  Google Scholar 

  • Jiang K, Meng YL, Feldman LJ (2003) Quiescent center formation in maize roots is associated with an auxin-regulated oxidizing environment. Development 130:1429–1438. doi:10.1242/dev.00359

    Article  PubMed  CAS  Google Scholar 

  • Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravotropism. Plant Physiol 126:1055–1060. doi:10.1104/pp.126.3.1055

    Article  PubMed  CAS  Google Scholar 

  • Lai F, Thacker J, Li Y, Doerner P (2007) Cell division activity determines the magnitude of phosphate starvation responses in Arabidopsis. Plant J 50:545–556. doi:10.1111/j.1365-313X.2007.03070.x

    Article  PubMed  CAS  Google Scholar 

  • Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 29:751–760. doi:10.1046/j.1365-313X.2002.01251.x

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidases in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667. doi:10.1007/s00425-003-1028-1

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, van der Yalm E, Schopfer P (2004) Production of reactive oxygen intermediates (O2 , H2O2 and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol 135:3114–3123. doi:10.1104/pp.104.044784

    Article  Google Scholar 

  • Lopéz-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacopo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256. doi:10.1104/pp.010934

    Article  PubMed  Google Scholar 

  • López-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Perez-Torres A, Rampey RA, Bartel B, Herrera-Estrella L (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiol 137:681–691. doi:10.1104/pp.104.049577

    Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J 29:257–268. doi:10.1046/j.0960-7412.2001.01215.x

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:437–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  Google Scholar 

  • Nacry P, Canivenc G, Muller B, Azmi A, Van Oncelen H, Rossignol M, Doumas P (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138:2061–2074. doi:10.1104/pp.105.060061

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez AA, Grunberg KA, Taleisnik EL (2002) Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol 129:1627–1632. doi:10.1104/pp.001222

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Calderón L, López-Bucio J, Chacón-López A, Gutiérrez-Ortega A, Hernández-Abreu E, Herrera-Estrella L (2005) Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus-induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol 140:879–889. doi:10.1104/pp.105.073825

    Article  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberelin and abscisic acid. Plant Physiol 125:1591–1602. doi:10.1104/pp.125.4.1591

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plat root cell response to nutrient deprivation. Proc Natl Acad Sci USA 101:8827–8832. doi:10.1073/pnas.0401707101

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46:1350–1357. doi:10.1093/pcp/pci145

    Article  PubMed  CAS  Google Scholar 

  • Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126:875–882. doi:10.1104/pp.126.2.875

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C-P (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448. doi:10.1104/pp.126.4.1438

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Grant of the Rector of Nicolaus Copernicus University (Grant No. 525-B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarosław Tyburski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyburski, J., Dunajska, K. & Tretyn, A. Reactive oxygen species localization in roots of Arabidopsis thaliana seedlings grown under phosphate deficiency. Plant Growth Regul 59, 27–36 (2009). https://doi.org/10.1007/s10725-009-9385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-009-9385-9

Keywords

Navigation