Skip to main content

Advertisement

Log in

ALG12-CDG: novel glycophenotype insights endorse the molecular defect

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Congenital disorders of glycosylation (CDG) are genetic diseases characterized by deficient synthesis (CDG type I) and/or abnormal processing (CDG type II) of glycan moieties linked to protein and lipids. The impact of the molecular defects on protein glycosylation and in turn on the clinical phenotypes of patients with CDG is not yet understood. ALG12-CDG is due to deficiency of ALG12 α1,6-mannosyltransferase that adds the eighth mannose residue on the dolichol-PP-oligosaccharide precursor in the endoplasmic reticulum. ALG12-CDG is a severe multisystem disease associated with low to deficient serum immunoglobulins and recurrent infections. We thoroughly investigated the glycophenotype in a patient with novel ALG12 variants and immunodeficiency. We analyzed serum native transferrin, as first line test for CDG and we profiled serum IgG and total serum N-glycans by a combination of consolidated (N-glycan analysis by MALDI MS) and innovative mass spectrometry-based protocols, such as GlycoWorks RapiFluor N-glycan analysis coupled with LC-ESI MS. Intact serum transferrin showed, as expected for a CDG type I defect, underoccupancy of N-glycosylation sites. Surprisingly, total serum proteins and IgG N-glycans showed some specific changes, consisting in accumulating amounts of definite high-mannose and hybrid structures. As a whole, ALG12-CDG behaves as a dual CDG (CDG-I and II defects) and it is associated with distinct, abnormal glycosylation of total serum and IgG N-glycans. Glycan profiling of target glycoproteins may endorse the molecular defect unraveling the complex clinical phenotype of CDG patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Péanne, R., de Lonlay, P., Foulquier, F., Kornak, U., Lefeber, D.J., Morava, E., Pérez, B., Seta, N., Thiel, C., Van Schaftingen, E., Matthijs, G., Jaeken, J.: Congenital disorders of glycosylation (CDG): Quo vadis? Eur. J. Med. Genet. 61, 643–663 (2018)

    Article  Google Scholar 

  2. Ng, B.G., Freeze, H.H.: Perspectives on glycosylation and its congenital disorders. Trends Genet. 34, 466–476 (2018)

    Article  CAS  Google Scholar 

  3. Barone, R., Fiumara, A., Jaeken, J.: Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin. Neurol.34, 357–366 (2014)

    Article  Google Scholar 

  4. Ferreira, C.R., Altassan, R., Marques-Da-Silva, D., Francisco, R., Jaeken, J., Morava, E.: Recognizable phenotypes in CDG. J. Inherit. Metab. Dis. 41, 541–553 (2018)

    Article  CAS  Google Scholar 

  5. Abu Bakar, N., Lefeber, D.J., van Scherpenzeel, M.: Clinical glycomics for the diagnosis of congenital disorders of glycosylation. J. Inherit. Metab. Dis. 41, 499–513 (2018)

    Article  CAS  Google Scholar 

  6. Edvardson, S., Ashikov, A., Jalas, C., Sturiale, L., Shaag, A., Fedick, A., Treff, N.R., Garozzo, D., Gerardy-Schahn, R., Elpeleg, O.: Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis. J. Med. Genet. 50, 733–739 (2013)

    Article  CAS  Google Scholar 

  7. Chantret, I., Dupré, T., Delenda, C., Bucher, S., Dancourt, J., Barnier, A., Charollais, A., Heron, D., Bader-Meunier, B., Danos, O., Seta, N., Durand, G., Oriol, R., Codogno, P., Moore, S.E.: Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-P-mannose:Man-7-GlcNAc2-PP-dolichyl mannosyltransferase. J. Biol. Chem. 277, 25815–25822 (2002)

    Article  CAS  Google Scholar 

  8. Thiel, C., Schwarz, M., Hasilik, M., Grieben, U., Hanefeld, F., Lehle, L., von Figura, K., Körner, C.: Deficiency of dolichyl-P-Man:Man-7-GlcNAc2-PP-dolichyl mannosyltransferase causes congenital disorder of glycosylation type Ig. Biochem. J. 367, 195–201 (2002)

    Article  CAS  Google Scholar 

  9. Grubenmann, C.E., Frank, C.G., Kjaergaard, S., Berger, E.G., Aebi, M., Hennet, T.: ALG12 mannosyltransferase defect in congenital disorder of glycosylation type Ig. Hum. Mol. Genet. 11, 2331–2339 (2002)

    Article  CAS  Google Scholar 

  10. Eklund, E.A., Newell, J.W., Sun, L., Seo, N.S., Alper, G., Willert, J., Freeze, H.H.: Molecular and clinical description of the first US patients with congenital disorder of glycosylation Ig. Mol. Genet. Metab. 84, 25–31 (2005)

    Article  CAS  Google Scholar 

  11. Di Rocco, M., Hennet, T., Grubenmann, C.E., Pagliardini, S., Allegri, A.E., Frank, C.G., Aebi, M., Vignola, S., Jaeken, J.: Congenital disorder of glycosylation (CDG) Ig: report on a patient and review of the literature. J. Inherit. Metab. Dis. 28, 1162–1164 (2005)

    Article  Google Scholar 

  12. Kranz, C., Basinger, A.A., Gucsavas-Calikoglu, M., Sun, L., Powell, C.M., Henderson, F.W., Aylsworth, A.S., Freeze, H.H.: Expanding spectrum of congenital disorder of glycosylation Ig (CDG-Ig): sibs with a unique skeletal dysplasia, hypogammaglobulinemia, cardiomyopathy, genital malformations, and early lethality. Am. J. Med. Genet. 143A, 1371–1378 (2007)

    Article  CAS  Google Scholar 

  13. Murali, C., Lu, J.T., Jain, M., Liu, D.S., Lachman, R., Gibbs, R.A., Lee, B.H., Cohn, D., Campeau, P.M.: Diagnosis of ALG12-CDG by exome sequencing in a case of severe skeletal dysplasia. Mol. Genet. Metab. Rep. 1, 213–219 (2014)

    Article  CAS  Google Scholar 

  14. Sturiale, L., Barone, R., Palmigiano, A., Ndosimao, C.N., Briones, P., Adamowicz, M., Jaeken, J., Garozzo, D.: Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics. 8, 3822–3832 (2008)

    Article  CAS  Google Scholar 

  15. Sturiale, L., Barone, R., Garozzo, D.: The impact of mass spectrometry in the diagnosis of congenital disorders of glycosylation. J. Inherit. Metab. Dis. 34, 891–899 (2011)

    Article  CAS  Google Scholar 

  16. Palmigiano, A., Messina, A., Sturiale, L., Garozzo, D.: Advanced LC-MS Methods for N-Glycan Characterization. In: Cappiello, A., Palma, P. (eds). Comprehensive Analytical Chemistry - Advances in the Use of Liquid Chromatography Mass Spectrometry (LC-MS): Instrumentation Developments and Applications, 79 pp. 174–172. Elsevier B.V. (2018)

    Chapter  Google Scholar 

  17. Zhou, S., Veillon, L., Dong, X., Huang, Y., Mechref, Y.: Direct comparison of derivatization strategies for LC-MS/MS analysis of N-glycans. Analyst. 142, 4446–4455 (2017)

    Article  CAS  Google Scholar 

  18. Hayes, J.M., Cosgrave, E.F., Struwe, W.B., Wormald, M., Davey, G.P., Jefferis, R., Rudd, P.M.: Glycosylation and Fc receptors. Curr. Top. Microbiol. Immunol. 382, 165–199 (2014)

    CAS  PubMed  Google Scholar 

  19. van de Bovenkamp, F.S., Hafkenscheid, L., Rispens, T., Rombouts, Y.: The emerging importance of IgG Fab glycosylation in immunity. J. Immunol. 196, 1435–1441 (2016)

    Article  Google Scholar 

  20. Huhn, C., Selman, M.H., Ruhaak, L.R., Deelder, A.M., Wuhrer, M.: IgG glycosylation analysis. Proteomics. 9, 882–913 (2009)

    Article  CAS  Google Scholar 

  21. Rymen, D., Peanne, R., Millón, M.B., Race, V., Sturiale, L., Garozzo, D., Mills, P., Clayton, P., Asteggiano, C.G., Quelhas, D., Cansu, A., Martins, E., Nassogne, M.C., Gonçalves-Rocha, M., Topaloglu, H., Jaeken, J., Foulquier, F., Matthijs, G.: MAN1B1 deficiency: an unexpected CDG-II. PLoS Genet. 9, (2013). https://doi.org/10.1371/journal.pgen.1003989

    Article  Google Scholar 

  22. Van Scherpenzeel, M., Timal, S., Rymen, D., Hoischen, A., Wuhrer, M., Hipgrave-Ederveen, A., Grunewald, S., Peanne, R., Saada, A., Edvardson, S., Grønborg, S., Ruijter, G., Kattentidt-Mouravieva, A., Brum, J.M., Freckmann, M.L., Tomkins, S., Jalan, A., Prochazkova, D., Ondruskova, N., Hansikova, H., Willemsen, M.A., Hensbergen, P.J., Matthijs, G., Wevers, R.A., Veltman, J.A., Morava, E., Lefeber, D.J.: Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency. Brain. 137, 1030–1038 (2014)

    Article  Google Scholar 

  23. Duvet, S., Mouajjah, D., Péanne, R., Matthijs, G., Raymond, K., Jaeken, J., Morava, E., Foulquier, F.: Use of endoglycosidase H as a diagnostic tool for MAN1B1-CDG patients. Electrophoresis. 39, 3133–3141 (2018)

    Article  CAS  Google Scholar 

  24. Monticelli, M., Ferro, T., Jaeken, J., Dos Reis Ferreira, V., Videira, P.A.: Immunological aspects of congenital disorders of glycosylation (CDG): a review. J. Inherit. Metab. Dis. 39, 765–780 (2016)

    Article  CAS  Google Scholar 

  25. Zdebska, E., Bader-Meunier, B., Schischmanoff, P.O., Dupré, T., Seta, N., Tchernia, G., Kościelak, J., Delaunay, J.: Abnormal glycosylation of red cell membrane band 3 in the congenital disorder of glycosylation Ig. Pediatr. Res. 54, 224–229 (2003)

    Article  Google Scholar 

  26. Callewaert, N., Schollen, E., Vanhecke, A., Jaeken, J., Matthijs, G., Contreras, R.: Increased fucosylation and reduced branching of serum glycoprotein N-glycans in all known subtypes of congenital disorder of glycosylation I. Glycobiology. 13, 367–375 (2003)

    Article  CAS  Google Scholar 

  27. Kanda, Y., Yamada, T., Mori, K., Okazaki, A., Inoue, M., Kitajima-Miyama, K., Kuni-Kamochi, R., Nakano, R., Yano, K., Kakita, S., Shitara, K., Satoh, M.: Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology. 17, 104–118 (2007)

    Article  CAS  Google Scholar 

  28. Raju, T.S.: Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 20, 471–478 (2008)

    Article  CAS  Google Scholar 

  29. Royle, L., Campbell, M.P., Radcliffe, C.M., White, D.M., Harvey, D.J., Abrahams, J.L., Kim, Y.G., Henry, G.W., Shadick, N.A., Weinblatt, M.E., Lee, D.M., Rudd, P.M., Dwek, R.A.: HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376, 1–12 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors thank the parents of the patient for their collaboration.

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to conception and design: RB, SB, LS, DG. Analysis and interpretation of data: RB, SB, LS, DG, AT, EA, AM, AP, FE, CB. Drafting the article: RB, LS. Revising the article critically for important intellectual content: AF, AN, DG, JJ.

Corresponding author

Correspondence to Rita Barone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee Policlinico-VE university hospital of Catania and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was signed by the parents’ proband.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sturiale, L., Bianca, S., Garozzo, D. et al. ALG12-CDG: novel glycophenotype insights endorse the molecular defect. Glycoconj J 36, 461–472 (2019). https://doi.org/10.1007/s10719-019-09890-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-019-09890-2

Keywords

Navigation