Skip to main content
Log in

The impact of mass spectrometry in the diagnosis of congenital disorders of glycosylation

  • CDG - an update
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Contribution of mass spectrometry (MS) in the diagnosis and characterization of congenital disorders of glycosylation (CDG) has long been known. CDG type I diseases are characterized by the under-occupancy of protein N-glycosylation sites. Electrospray (ESI) MS and matrix assisted laser desorption ionization (MALDI) MS are effective for underglycosylation analyses of intact serum Transferrin (Tf) in CDG-I patients by mass determination of individual component glycoforms. Thus, high-throughput methods developed to speed-up analytical times found increasing application in clinical testing for CDG detection. ESI MS recognizable glycoform profiles of serum Tf have been reported in CDG-I different from PMM2-CDG and in individual CDG-II defects. MALDI MS analysis of acidic and neutral N-linked glycans released from total plasma or targeted glycoproteins, is the mainstream tool to explore abnormal oligosaccharide structure and changes in the relative amount of individual oligosaccharides in CDG-II patients. Here we briefly review state-of-the-art and updates of MS-based applications for the diagnosis of CDG with special emphasis to detectable glycosylation profiles reported in different CDG types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  PubMed  CAS  Google Scholar 

  • Banta-Wright SA, Steiner RD (2004) Tandem mass spectrometry in newborn screening: a primer for neonatal and perinatal nurses. J Perinat Neonatal Nurs 18:41–58

    PubMed  Google Scholar 

  • Barone R, Sturiale L, Sofia V, Ignoto A, Fiumara A, Sorge G, Garozzo D, Zappia M (2008) Clinical phenotype correlates to glycoprotein phenotype in a sib pair with CDG-Ia. Am J Med Genet A 146A:2103–2108

    Article  PubMed  CAS  Google Scholar 

  • Barone R, Sturiale L, Garozzo D (2009) Mass spectrometry in the characterization of human genetic N-glycosylation defects. Mass Spectrom Rev 28:517–542

    Article  PubMed  CAS  Google Scholar 

  • Bergen HR, Lacey JM, O’Brien JF, Naylor S (2001) Online single-step analysis of blood proteins: the transferrin story. Anal Biochem 296:122–129

    Article  PubMed  CAS  Google Scholar 

  • Babovic-Vuskanovic D, O’Brien JF (2007) Laboratory diagnosis of congenital disorders of glycosylation type I by analysis of transferrin glycoforms. Mol Diagn Ther 11:303–311

    Google Scholar 

  • Bruneel A, Robert T, Lefeber DJ, Benard G, Loncle E, Djedour A, Durand G, Seta N (2007) Two-dimensional gel electrophoresis of apolipoprotein C-III and other serum glycoproteins for the combined screening of human congenital disorders of O- and N-glycosylation. Proteom Clin Appl 1:321–324

    Article  CAS  Google Scholar 

  • Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL, Bielas SL, Lehle L, Hombauer H, Adamowicz M, Swiezewska E, De Brouwer AP, Blümel P, Sykut-Cegielska J, Houliston S, Swistun D, Ali BR, Dobyns WB, Babovic-Vuksanovic D, van Bokhoven H, Wevers RA, Raetz CR, Freeze HH, Morava E, Al-Gazali L, Gleeson JG (2010) SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 142:203–217

    Article  PubMed  CAS  Google Scholar 

  • Carlson DM (1968) Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem 243:616–626

    PubMed  CAS  Google Scholar 

  • Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydr Res 131:209–217

    Article  CAS  Google Scholar 

  • Coddeville B, Carchon H, Jaeken J, Briand G, Spik G (1998) Determination of glycan structures and molecular masses of the glycovariants of serum transferrin from a patient with carbohydrate deficient syndrome type II. Glycoconj J 15:265–273

    Article  PubMed  CAS  Google Scholar 

  • Cornett DS, Reyzer ML, Chaurand P, Caprioli RM (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Meth 4:828–833

    Article  CAS  Google Scholar 

  • Dell A (1990) Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides. Methods Enzymol 193:647–660

    Article  PubMed  CAS  Google Scholar 

  • De Praeter CM, Gerwig GJ, Bause E, Nuytinck LK, Vliegenthart JF, Breuer W, Kamerling JP, Espeel MF, Martin JJ, De Paepe AM, Chan NW, Dacremont GA, Van Coster RN (2000) A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet 66:1744–1756

    Article  PubMed  Google Scholar 

  • Faid V, Chirat F, Seta N, Foulquier F, Morelle W (2007) A rapid mass spectrometric strategy for the characterization of N- and O-glycan chains in the diagnosis of defects in glycan biosynthesis. Proteomics 7:1800–1813

    Article  PubMed  CAS  Google Scholar 

  • Foulquier F, Vasile E, Schollen E, Callewaert N, Raemaekers T, Quelhas D, Jaeken J, Mills P, Winchester B, Krieger M, Annaert W, Matthijs G (2006) Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc Natl Acad Sci USA 103:3764–3769

    Article  PubMed  CAS  Google Scholar 

  • Foulquier F (2009) COG defects, birth and rise! Biochim Biophys Acta 1792:896–902

    PubMed  CAS  Google Scholar 

  • Garozzo D, Impallomeni G, Spina E, Green BN, Hutton T (1991) Linkage analysis in disaccharides by electrospray mass spectrometry. Carbohydr Res 221:253–257

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S (1964) A rapid permethylation of glycolipid and polysaccharide catalized by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem 55:205–208

    PubMed  CAS  Google Scholar 

  • Hansske B, Thiel C, Lübke T, Hasilik M, Höning S, Peters V, Heidemann PH, Hoffmann GF, Berger EG, von Figura K, Körner C (2002) Deficiency of UDP-galactose:N-acetylglucosamine beta-1, 4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J Clin Invest 109:725–733

    Article  PubMed  CAS  Google Scholar 

  • Harvey DJ, Jaeken J, Butler M, Armitage AJ, Rudd PM, Dwek RA (2010) Fragmentation of negative ions from N-linked carbohydrates, part 4. Fragmentation of complex glycans lacking substitution on the 6-antenna. J Mass Spectrom 45:528–535

    Article  PubMed  CAS  Google Scholar 

  • Haslam SM, Julien S, Burchell JM, Monk CR, Ceroni A, Garden OA, Dell A (2008) Characterizing the glycome of the mammalian immune system. Immunol Cell Biol 86:564–573

    Article  PubMed  CAS  Google Scholar 

  • Hülsmeier AJ, Paesold-Burda P, Hennet T (2007) N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography-mass spectrometry. Mol Cell Proteomics 6:2132–2138

    Article  PubMed  Google Scholar 

  • Jaeken J, Matthijs G (2007) Congenital Disorders of Glycosylation: a rapidly expanding disease family. Annu Rev Genomics Hum Genet 8:261–278

    Article  PubMed  CAS  Google Scholar 

  • Jaeken J, Vanderschueren-Lodeweyckx M, Casaer P, Snoeck L, Corbeel L, Eggermont E, Eeckels R (1980) Familial psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG-deficiency, increased serum arylsulphatase A and increased CSF protein: a new syndrome? Pediatr Res 14:179

    Article  Google Scholar 

  • Jaeken J, Hennet T, Matthijs G, Freeze HH (2009) CDG nomenclature: time for a change! Biochim Biophys Acta 1792:825–826

    PubMed  CAS  Google Scholar 

  • Kang P, Mechref Y, Klouckova I, Novotny MV (2005) Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom 19:3421–3428

    Article  PubMed  CAS  Google Scholar 

  • Kleinert P, Kuster T, Durka S, Ballhausen D, Bosshard NU, Steinmann B, Hänseler E, Jaeken J, Heizmann CW, Troxler H (2003) Mass spectrometric analysis of human transferrin in different body fluids. Clin Chem Lab Med 41:1580–1588

    Article  PubMed  CAS  Google Scholar 

  • Kranz C, Ng BG, Sun L, Sharma V, Eklund EA, Miura Y, Ungar D, Lupashin V, Winkel RD, Cipollo JF, Costello CE, Loh E, Hong W, Freeze HH (2007) COG8 deficiency causes new congenital disorder of glycosylation type IIh. Hum Mol Genet 16:731–741

    Article  PubMed  CAS  Google Scholar 

  • Lacey JM, Bergen HR, Magera MJ, Naylor S, O’Brien JF (2001) Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry. Clin Chem 47:513–518

    PubMed  CAS  Google Scholar 

  • Lefeber DJ, Schönberger J, Morava E, Guillard M, Huyben KM, Verrijp K, Grafakou O, Evangeliou A, Preijers FW, Manta P, Yildiz J, Grünewald S, Spilioti M, van den Elzen C, Klein D, Hess D, Ashida H, Hofsteenge J, Maeda Y, van den Heuvel L, Lammens M, Lehle L, Wevers RA (2009) Am J Hum Genet 85:76–86

    Article  PubMed  CAS  Google Scholar 

  • Lübbehusen J, Thiel C, Rind N, Ungar D, Prinsen BH, de Koning TJ, van Hasselt PM, Körner C (2010) Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum Mol Genet 19:3623–3633

    Article  PubMed  Google Scholar 

  • Mechref Y, Kang P, Novotny MV (2006) Differentiating structural isomers of sialylated glycans by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 20:1381–1389

    Article  PubMed  CAS  Google Scholar 

  • Morava E, Lefeber DJ, Urban Z, de Meirleir L, Meinecke P, Gillessen Kaesbach G, Sykut-Cegielska J, Adamowicz M, Salafsky I, Ranells J, Lemyre E, van Reeuwijk J, Brunner HG, Wevers RA (2008) Defining the phenotype in an autosomal recessive cutis laxa syndrome with a combined congenital defect of glycosylation. Eur J Hum Genet 16:28–35

    Article  PubMed  CAS  Google Scholar 

  • Morelle W, Michalski JC (2007) Analysis of protein glycosylation by mass spectrometry. Nat Protoc 2:1585–1602

    Article  PubMed  CAS  Google Scholar 

  • Mills PB, Mills K, Mian N, Winchester BG, Clayton PT (2003) Mass spectrometric analysis of glycans in elucidating the pathogenesis of CDG type IIx. J Inherit Metab Dis 26:119–134

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi T, Okamoto N, Tanaka K, Shimizu A (1994) Laser desorption time-of-flight mass spectrometric analysis of transferrin precipitated with antiserum: a unique simple method to identify molecular weight variants. Biol Mass Spectrom 23:230–233

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JF (2005) Methods for detection of carbohydrate-deficient glycoprotein syndromes. Semin Pediatr Neurol 12:159–162

    Article  Google Scholar 

  • Paesold-Burda P, Maag C, Troxler H, Foulquier F, Kleinert P, Schnabel S, Baumgartner M, Hennet T (2009) Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum Mol Genet 18:4350–4356

    Article  PubMed  CAS  Google Scholar 

  • Papac DI, Wong A, Jones AJ (1996) Analysis of acidic oligosaccharides and glycopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 68:3215–3223

    Article  PubMed  CAS  Google Scholar 

  • Pohl S, Hoffmann A, Rüdiger A, Nimtz M, Jaeken J, Conradt HS (1997) Hypoglycosylation of a brain glycoprotein (beta-trace protein) in CDG syndromes due to phosphomannomutase deficiency and N-acetylglucosaminyl-transferase II deficiency. Glycobiology 7:1077–1084

    Article  PubMed  CAS  Google Scholar 

  • Powell AK, Harvey DJ (1996) Stabilization of sialic acids in N-linked oligosaccharides and gangliosides for analysis by positive ion matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 10:1027–1032

    Article  PubMed  CAS  Google Scholar 

  • Reynders E, Foulquier F, Leão Teles E, Quelhas D, Morelle W, Rabouille C, Annaert W, Matthijs G (2009) Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum Mol Genet 18:3244–3256

    Article  PubMed  CAS  Google Scholar 

  • Sagan Z (1968) The application of rivanol for serum transferrin and immunoglobulin G determination. Clin Chim Acta 21:225–230

    Article  PubMed  CAS  Google Scholar 

  • Sagi D, Kienz P, Denecke J, Marquardt T, Peter-Katalinić J (2005) Glycoproteomics of N-glycosylation by in-gel deglycosylation and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry mapping: application to congenital disorders of glycosylation. Proteomics 5:2689–2701

    Article  PubMed  CAS  Google Scholar 

  • Schachter H, Freeze HH (2009) Glycosylation diseases: quo vadis? Biochim Biophys Acta 1792:925–930

    PubMed  CAS  Google Scholar 

  • Sekiya S, Wada Y, Tanaka K (2005) Derivatization for stabilizing sialic acids in MALDI-MS. Anal Chem 77:4962–4968

    Article  PubMed  CAS  Google Scholar 

  • Spina E, Sturiale L, Romeo D, Impallomeni G, Garozzo D, Waidelich D, Glueckmann M (2004) Rapid Commun Mass Spectrom 18:392–398

    Article  PubMed  CAS  Google Scholar 

  • Sutton CW, O’Neill JA, Cottrel JS (1994) Site-specific characterization of glycoprotein carbohydrates by exoglycosidase digestion and laser desorption mass spectrometry. Anal Biochem 218:34–46

    Article  PubMed  CAS  Google Scholar 

  • Sturiale L, Barone R, Fiumara A, Perez M, Zaffanello M, Sorge G, Pavone L, Tortorelli S, O’Brien JF, Jaeken J (2005) Hypoglycosylation with increased fucosylation and branching of serum transferrin N-glycans in untreated galactosemia. Glycobiology 15:1268–1276

    Article  PubMed  CAS  Google Scholar 

  • Sturiale L, Barone R, Palmigiano A, Ndosimao CN, Briones P, Adamowicz M, Jaeken J, Garozzo D (2008) Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics 18:3822–3832

    Article  Google Scholar 

  • Vakhrushev SY, Mormann M, Peter-Katalinić J (2006) Identification of glycoconjugates in the urine of a patient with congenital disorder of glycosylation by high-resolution mass spectrometry. Proteomics 6:983–992

    Article  PubMed  CAS  Google Scholar 

  • Vakhrushev SY, Langridge J, Campuzano I, Hughes C, Peter-Katalinić J (2008) Ion mobility mass spectrometry analysis of human glycourinome. Anal Chem 80:2506–2513

    Article  PubMed  CAS  Google Scholar 

  • Wada Y (2007) Mass spectrometry in the detection and diagnosis of congenital disorders of glycosylation. Eur J Mass Spectrom 13:101–103

    Article  CAS  Google Scholar 

  • Wada Y, Tamura J, Musselman BD, Kassel DB, Sakurai T, Matsuo T (1992a) Electrospray ionization mass spectra of hemoglobin and transferrin by a magnetic sector mass spectrometer. Comparison with theoretical isotopic distributions. Rapid Commun Mass Spectrom 6:9–13

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Nishikawa A, Okamoto N, Inui K, Tsukamoto H, Okada S, Taniguchi N (1992b) Structure of serum transferrin in carbohydrate-deficient glycoprotein syndrome. Biochem Biophys Res Commun 189:832–836

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Gu J, Okamoto N, Inui K (1994) Diagnosis of Carbohydrate-deficient glycoprotein syndrome by Matrix-assisted Laser Desorption Time-of-flight mass spectrometry. Biol Mass Spectrom 23:108–109

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Tajiri M, Yoshida S (2004) Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal Chem 76:6560–6565

    Article  PubMed  CAS  Google Scholar 

  • Wada Y, Azadi P, Costello CE, Dell A, Dwek RA, Geyer H, Geyer R, Kakehi K, Karlsson NG, Kato K, Kawasaki N, Khoo KH, Kim S, Kondo A, Lattova E, Mechref Y, Miyoshi E, Nakamura K, Narimatsu H, Novotny MV, Packer NH, Perreault H, Peter-Katalinic J, Pohlentz G, Reinhold VN, Rudd PM, Suzuki A, Taniguchi N (2007) Comparison of the methods for profiling glycoprotein glycans–HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology 17:411–422

    Article  PubMed  CAS  Google Scholar 

  • Wopereis S, Grünewald S, Morava E, Penzien JM, Briones P, García-Silva MT, Demacker PN, Huijben KM, Wevers RA (2003) Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin Chem 49:1839–1845

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M, Spaapen L, Kornfeld S, Freeze HH (2004) Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 10:518–523

    Article  PubMed  CAS  Google Scholar 

  • Zeevaert R, Foulquier F, Jaeken J, Matthijs G (2008) Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation. Mol Genet Metab 93:15–21

    Article  PubMed  CAS  Google Scholar 

  • Zeevaert R, Foulquier F, Cheillan D, Cloix I, Guffon N, Sturiale L, Garozzo D, Matthijs G, Jaeken J (2009) A new mutation in COG7 extends the spectrum of COG subunit deficiencies. Eur J Med Genet 52:303–305

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Partial financial support from the Italian Ministry for University and for scientific and technology Research (MIUR), from the National Council of Research (CNR), from the Sixth Framework program of the European Union (Euroglycanet:LSHM-2005-512131) is gratefully acknowledged. Authors thank prof. Jaak Jaeken (University Hospital Leuven, Metabolic Diseases, Belgium) for providing serum samples from CDG-IIx patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Garozzo.

Additional information

Communicated by: Dirk Lefeber

Competing interest: None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sturiale, L., Barone, R. & Garozzo, D. The impact of mass spectrometry in the diagnosis of congenital disorders of glycosylation. J Inherit Metab Dis 34, 891–899 (2011). https://doi.org/10.1007/s10545-011-9306-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-011-9306-8

Keywords

Navigation