Skip to main content
Log in

Synthesis of Multicomponent Compounds with Pyrochloric Structure

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The solid-phase synthesis of multicomponent bismuth tantalates and niobates with pyrochloric structure (space group Fd-3m), containing equimolar amounts of transition 3d-element atoms, is demonstrated. The composition of such pyrochlores can be described by the stoichiometric formula Bi2Cr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Ta(Nb)2O9±∆. An aspect of the synthesis of pyrochlores is a multi-stage high-temperature process of heat treatment of samples in the range of 650 – 1050°C for 60 h. For pyrochlore based on bismuth tantalate, an impurity phase of triclinic bismuth orthotantalate β-BiTaO4 (sp. gr. P-1) is formed in trace quantities. Complex pyrochlore based on bismuth niobate is characterized by a dense, low-porous microstructure, in contrast to open, porous tantalum pyrochlore with average grain size equal to about 2 µm. The unit cell parameter for niobium- and tantalum-containing pyrochlores is equal to 10.4927 (10.4922) Å respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. S. Murugesan, M. N. Huda, Y. Yen, et al., “Band-engineered bismuth titanate pyrochlores for visible light photocatalysis,” J. Phys. Chem. C, 114(23), 10598 – 10605 (2010).

    Article  CAS  Google Scholar 

  2. J. Pandey, V. Shrivastava, and R. Nagarajan, “Metastable Bi2Zr2O7 with pyrochlore-like structure: Stabilization, oxygen ion conductivity, and catalytic properties,” Inorg. Chem., 57(21), 13667 – 13678 (2018).

    Article  CAS  Google Scholar 

  3. C. C. Khaw, K. B. Tan, and C. K. Lee, “High temperature dielectric properties of cubic bismuth zinc tantalate,” Ceram. Int., 35(4), 1473 – 1480 (2009).

    Article  CAS  Google Scholar 

  4. J. E. Greedan, “Frustrated rare earth magnetism: Spin glasses, spin liquids and spin ices in pyrochlore oxides,” J. Alloys Comp., 408 – 412, 444 – 455 (2006).

    Article  Google Scholar 

  5. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, et al., “Thermal expansion, XPS spectra, and structural and electrical properties of a new Bi2NiTa2O9 pyrochlore,” Inorg. Chem., 60(7), 4924 – 4934 (2021).

    Article  CAS  Google Scholar 

  6. T. A. Vanderah, M. W. Lufaso, A. U. Adler, et al., “Subsolidus phase equilibria and properties in the system Bi2O3:Mn2OxNb2O5,” J. Solid State Chem., 179(11), 3467 – 3477 (2006).

    Article  CAS  Google Scholar 

  7. T. A. Vanderah, T. Siegrist, M. W. Lufaso, et al., “Phase formation and properties in the system Bi2O3:2CoO1+xNb2O5,” Eur. J. Inorg. Chem., 2006(23), 4908 – 4914 (2006).

    Article  Google Scholar 

  8. M. P. Chon, K. B. Tan, C. C. Khaw, et al., “Subsolidus phase equilibria and electrical properties of pyrochlores in the Bi2O3–CuO–Ta2O5 ternary system,” J. Alloys Comp., 675, 116 – 127 (2016).

    Article  CAS  Google Scholar 

  9. M. Valant and D. Suvorov, “The Bi2O3–Nb2O5–NiO phase diagram,” J. Am. Ceram. Soc., 88(9), 2540 – 2543 (2005).

    Article  CAS  Google Scholar 

  10. M.W. Lufaso, T. A. Vanderah, I. M. Pazos, et al., “Phase formation, crystal chemistry, and properties in the system Bi2O3–Fe2O3–Nb2O5,” J. Sol. St. Chem., 179(12), 3900 – 3910 (2006).

    Article  CAS  Google Scholar 

  11. F. A. Jusoh, K. B. Tan, Z. Zainal, et al., “Novel pyrochlores in the Bi2O3–Fe2O3–Ta2O5 (BFT) ternary system: synthesis, structural and electrical properties,” J. Mater. Res. Techn., 9, 11022 – 11034 (2020).

    Article  CAS  Google Scholar 

  12. P. Y. Tan, K. B. Tan, C. Khaw, et al., “Structural and electrical properties of bismuth magnesium tantalate pyrochlores,” Ceram. Int., 38, 5401 – 5409 (2012).

    Article  CAS  Google Scholar 

  13. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, et al., “Cu, Mg co-doped bismuth tantalate pyrochlores: crystal structure, XPS spectra, thermal expansion, and electrical properties,” Inorg. Chem., 61, 4270 – 4282 (2022).

    Article  CAS  Google Scholar 

  14. M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, “Oxide pyrochlores – a review,” Prog. Solid State Chem., 15(2), 55 – 143 (1983).

  15. R. A. McCauley, “Structural characteristics of pyrochlore formation,” J. Appl. Phys., 51(1), 290 – 294 (1980).

    Article  CAS  Google Scholar 

  16. L. G. Akselrud, Yu. N. Grin, P. Yu. Zavalij, et al., “CSD-universal program package for single crystal or powder structure data treatment,” in: Thes. Rep. XII EUR. Crystallogr. Meet., Moscow (1989), Vol. 3, p. 155.

  17. N. A. Zhuk and M. G. Krzhizhanovskaya, “Thermal expansion of bismuth magnesium tantalate and niobate pyrochlores,” Ceram. Int., 47(21), 30099 – 30105 (2021).

    Article  CAS  Google Scholar 

  18. V. A. Muraviev, B. A. Makeev, M. G. Krzhizhanovskaya, et al. “Synthesis of Bi2NiTa2O9 with a pyrochlore structure,” Glass Ceram., 79(1 – 2), 70 – 74 (2022).

    Article  Google Scholar 

  19. N. A. Zhuk, M. G. Krzhizhanovskaya, V. A. Belyy, et al., “Phase transformations and thermal expansion of α- and β-BiTaO4 and the high-temperature modification of γ-BiTaO4,” Chem. Mater., 32(13), 5493 – 5501 (2020).

    Article  CAS  Google Scholar 

  20. N. A. Zhuk, M. G. Krzhizhanovskaya, A. V. Koroleva, et al., “Spectroscopic characterization of cobalt doped bismuth tantalate pyrochlore,” Solid State Sci., 125, 106820 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zhuk.

Additional information

Translated from Steklo i Keramika, No. 10, pp. 34 – 39, October, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parshukova, K.N., Rylchenko, E.P., Muravyov, V.A. et al. Synthesis of Multicomponent Compounds with Pyrochloric Structure. Glass Ceram 79, 418–421 (2023). https://doi.org/10.1007/s10717-023-00523-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-023-00523-7

Keywords

Navigation