Skip to main content

Advertisement

Log in

Integrated Geophysical and Geomorphological Studies of Caves in Calcarenite Limestones (Jaskinia pod Świecami Cave, Poland)

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The occurrence of subsurface karst caves can cause the development of superficial depressions which, in turn, may pose a construction hazard. Identifying such a substratum requires integrated non-invasive measurement methods. The main objective of the study was to demonstrate the effectiveness of the non-invasive ERT, TLS, and GPR survey techniques in identifying the karst floor and determining the direction of discontinuities around the cave. The paper analyzes the limitations of the methods used in the study of heterogeneous media. These limitations are related to the methodology and measurement conditions, data processing, and interpretation in the context of the resolution and depth range. The study was conducted using the example of the Jaskinia pod Świecami cave, formed in the Sarmatianal calcarenites in Poland. The research confirmed its complex karst-anthropogenic genesis. The cave was formed as a result of the infiltration of rainwater and the dissolution of limestone by groundwater, while the paleokarst forms that are characteristic of it and of the surrounding caves and occur in their vicinity, i.e., narrow ridges called "karst candles", were formed as a result of water circulation during the local permafrost degradation in the middle Pleistocene. However, these forms were modified in the Upper Pleistocene and Holocene, as indicated by ERT images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agliardi F, Crosta GB, Frattini P (2012) Slow rock-slope deformation. In: Clogue JJ, Stead D (eds) Landslides. Types, mechanics, and modeling. Cambridge University Press, New York, pp 207–221

    Chapter  Google Scholar 

  • Aizebeokhai AP (2010) 2D and 3D geoelectrical resistivity imaging: theory and field design. Sci Res Essays 5(23):3592–3605

    Google Scholar 

  • Aizebeokhai AP, Singh VS (2013) Field evaluation of 3D geo-electrical resistivity imaging for environmental and engineering studies using parallel 2D profiles. Curr Sci 105(4):504–512

    Google Scholar 

  • Amanatidou E, Vargemezis G, Tsourlos P (2022) Combined application of seismic and electrical geophysical methods for karst cavities detection: a case study at the campus of the new University of Western Macedonia, Kozani, Greece. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2021.104499

    Article  Google Scholar 

  • Annan AP (2001) Ground penetrating radar. Sensor & Software Ed, Canada

  • Beck B (2005) Soil piping and sinkhole failures. In: Culver DC, White WB (eds) Encyclopedia of caves, 2nd edn. Elsevier Academic Press, Cambridge, pp 521–526

    Google Scholar 

  • Bottari C, Aringoli D, Carluccio R, Castellano C, Varazi F (2017) Geomorphological and geophysical investigations for the characterization of the Roman Carsulae site (Tiber basin, Central Italy). J Appl Geophys 143:74–851

    Article  Google Scholar 

  • Brunsden D (1979) Mass movements. In: Embleton C, Thornes JB (eds) Process in geomorphology. E. Arnold, London, pp 130–186

    Google Scholar 

  • Bugajska-Pająk A (1975) Badania skał węglanowo-detrytycznych w rejonie Dobra-Sztombergi (archival manuscript). National Geological Archive, Polish Geological Institute, Świętokrzyski Branch.

  • Buła Z, Żaba J, Habryn R (2008) Tectonic subdivision of Poland – southern Poland (Upper Silesian and Małopolski Block). Przegląd Geologiczny 56(10):912–920

    Google Scholar 

  • Cahalan MD, Milewski AM (2018) Sinkhole formation mechanisms and geostatistical-based prediction analysis in a mantled karst terrain. CATENA 165:333–344. https://doi.org/10.1016/j.catena.2018.02.010

    Article  Google Scholar 

  • Castellanza R, Lollino P, Ciantia MA (2018) A methodological approach to assess the hazard of underground cavities subjected to environmental weathering. Tunn Undergr Space Technol 82:278–292. https://doi.org/10.1016/j.tust.2018.08.041

    Article  Google Scholar 

  • Chambers JE, Wilkinson PB, Wardrop D, Hameed A, Hill I, Jeffrey C, Loke MH, Meldrum PI, Kuras O, Cave M, Gunn DA (2012) Bedrock detection beneath river terrace deposits using three-dimensional electrical resistivity tomography. Geomorphology 177–178:17–25. https://doi.org/10.1016/j.geomorph.2012.03.034

    Article  Google Scholar 

  • Crozier MJ (2010) Deciphering the effect of climate change on landslide activity. Geomorphology 124:260–267

    Article  Google Scholar 

  • Czapowski J (2004) Otoczenie Gór Świętokrzyskich. In: Peryt T, Piwocki M (eds) Budowa geologiczna Polski v. 1, Stratygrafia, p. 3a, Kenozoik. Państw. Inst. Geol., Warszawa, pp 239–246

  • Daniels DJ (2005) Ground penetrating radar. Encyclopedia of RF and microwave engineering, London, U.K.: IET. https://doi.org/10.1002/0471654507.eme152

  • De Waele J, Fabbri S, Santagata T, Chiarini V, Columbu A, Pisani L (2018) Geomorphological and speleogenetical observations using terrestrial laser scanning and 3D photogrammetry in a gypsum cave (Emilia Romagna, N. Italy). Geomorphology 319:47–61. https://doi.org/10.1016/j.geomorph.2018.07.012

    Article  Google Scholar 

  • Dikau R (2004) Mass movement. In: Goudie AS (ed) Encyclopedia of geomorphology, vol 2. J-Z. Taylor&Francis Group, London, pp 644–653

    Google Scholar 

  • Dikau R, Brunsden D, Schrott L, Ibsen M-L (eds) (1996) Landslide recognition. Wiley, Chichester

    Google Scholar 

  • Dobrowolski R, Terpiłowski S, Walsh P, Zagórski P (2007) The relationship of the Sanian ice sheet to depressions in the subglacial surface at the Smerdyna no 1 quarry, near Staszów (southern margin of Holy Cross Mountains, Poland) new data and new concepts. Karst and Cryokarst, 25th Speleological School, 8th GLACKIPR Symposium, March 19–26, Sosnowiec, Poland (poster)

  • Ducut JD, Alipio M, Go PJ, Concepcion R, Vicerra RR, Bandala A, Dadios E (2022) A review of electrical resistivity tomography applications in underground imaging and object detection. Displays. https://doi.org/10.1016/j.displa.2022.102208

    Article  Google Scholar 

  • Ellis RG, Oldenburg DW (1994) Applied geophysical inversion. Geophys J Int 116:5–11. https://doi.org/10.1111/j.1365-246X.1994.tb02122.x

    Article  Google Scholar 

  • Everett ME (2013) Near-surface applied geophysics. Cambridge University Press, London

    Book  Google Scholar 

  • Fabbri S, Sauro F, Santagata T, Rossi G, De Waele J (2017) High-resolution 3-D mapping using terrestrial laser scanning as a tool for geomorphological and speleogenetical studies in caves: An example from the Lessini mountains (North Italy). Geomorphology 280:16–29. https://doi.org/10.1016/j.geomorph.2016.12.001280

    Article  Google Scholar 

  • Farquharson CG, Oldenburg DW (1998) Non-linear inversion using general measures of data misfit and model structure. Geophys J Int 134(1998):213–227

    Article  Google Scholar 

  • Fekete S, Diederichs M (2013) Integration of three-dimensional laser scanning with discontinuum modeling for stability analysis of tunnels in blocky rock masses. Int J Rock Mech Min Sci 57(1):11–23. https://doi.org/10.1016/j.ijrmms.2012.08.003

    Article  Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester. https://doi.org/10.1002/9781118684986

    Book  Google Scholar 

  • Fu Z, Ren Z, Hua X, Shi Y, Chen H, Chen C, Li Y, Tang J (2020) Identification of underground water-bearing caves in noisy urban environments (Wuhan, China) using 3D electrical resistivity tomography techniques. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2020.103966

    Article  Google Scholar 

  • Gajek G, Zieliński A, Franczak Ł, Komorowski A, Przedpełski Ł, Adamczak M (2016) Ocena możliwości naziemnego skaningu laserowego (TLS) w badaniach pustek podziemnych na przykładzie Jaskini pod Świecami. Evaluation of the possibilities of terrestrial laser scanning (TLS) in a survey of underground cavities, a case study of the Jaskinia pod Świecami cave. Materiały 50. Sympozjum Speleologicznego, Wyd. Sekcja Speleologiczna Polskiego Towarzystwa Przyrodników im. Kopernika, Kraków, pp 106–107

  • Gan FP, Han K, Lan FN, Chen YL, Zhang W (2017) Multi-geophysical approaches to detect karst channels underground-a case study in Mengzi of Yunnan Province, China. J Appl Geophys 136(91–98):7

  • Gharibi M, Bentley LR (2005) Resolution of 3-D electrical resistivity images from inversions of 2-D orthogonal lines. J Environ Eng Geophys 10(4):339–349. https://doi.org/10.2113/JEEG10.4.339

    Article  Google Scholar 

  • Gubała J, Kasza A (1998a) Jaskinia pod Świecami N-2.81. In: Gubała J, Kasza A, Urban J (eds) Jaskinie Niecki Nidziańskiej. Pol. Tow. Przyjaciół Nauk o Ziemi, Warszawa, pp 142–144

  • Gubała J, Kasza A (1998b) Jaskinia w Śladkowie Dużym N-2.77. In: Gubała J, Kasza A, Urban J (eds) Jaskinie Niecki Nidziańskiej. Pol. Tow. Przyjaciół Nauk o Ziemi, Warszawa, pp 137–138

  • Gubała J (1998) Jaskinia w Śladkowie Małym N-2.78. In: Gubała J, Kasza A, Urban J (eds) Jaskinie Niecki Nidziańskiej. Pol. Tow. Przyjaciół Nauk o Ziemi, Warszawa, pp 138–140

  • Gutiérrez F, Parise M, De Waele J, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88

    Article  Google Scholar 

  • Hung Y-C, Lin C-P, Lee C-T, Weng K-W (2019) 3D and boundary effects on 2D electrical resistivity tomography. Appl Sci 9(15):2963. https://doi.org/10.3390/app9152963

    Article  Google Scholar 

  • Jurkiewicz H, Woiński J (1981) Mapa geologiczna Polski 1:200 000. Arkusz Mielec. Wyd. Geol. Warszawa.

  • Kačaroğlu F (1999) Review of groundwater pollution and protection in karst areas. Water Air Soil Pollut 113(1):337–356

    Article  Google Scholar 

  • Kamiński W, Bojanowski K, Dumalski A, Mroczkowski K, Trystuła J (2008) Ocena możliwości wykorzystania skanera laserowego ScanStation firmy Leica w badaniu deformacji obiektówbudowlanych. Czasopismo Techniczne 2:139–147

    Google Scholar 

  • Karnkowski PH (2008) Regionalizacja tektoniczna Polski – Niż Polski. Przegląd Geologiczny 56(10):895–903

    Google Scholar 

  • Kaufmann G, Romanov D (2017) The Jettencave, Southern Harz Mountains, Germany: geophysical observations and a structural model of a shallow cave in gypsum/anhydrite-bearing rocks. Geomorphology 298:20–30

    Article  Google Scholar 

  • Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration. Wiley, New York, p 280

    Google Scholar 

  • Kędzierski M, Walczykowski P, Fryśkowska A (2008) Wybrane aspekty opracowania dokumentacji architektonicznej obiektów zabytkowych. Archiwum Fotogrametrii, Kartografii i Teledetekcji 18:221–230

    Google Scholar 

  • Kędzierski M, Walczykowski P, Fryśkowska A (2010) Aspekty pozyskiwania danych z naziemnego skaningu laserowego. Biuletyn WAT 59(2):211–221

    Google Scholar 

  • Kidanu ST, Varnavina AV, Anderson N, Torgashov E (2020) Pseudo-3D electrical resistivity tomography imaging of the subsurface structure of a sinkhole—a case study in Greene County. Missouri AIMS Geosci 6(1):54–70. https://doi.org/10.3934/geosci.2020005

    Article  Google Scholar 

  • Łaptaś A (1992) Giant-scale cross-bedded Miocene biocalcarenites in the northern margin of the Carpathian Foredeep. Ann Soc Geol Pol 62(2):149–167

    Google Scholar 

  • Lesmes DP, Friedman SP (2005) Relationships between the electrical and hydrogeological properties of rocks and soils. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics water science and technology library. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3102-5_4

    Chapter  Google Scholar 

  • Linares R, Roqué C, Gutiérrez F, Zarroca M, Carbonel D, Bach J, Fabregat I (2017) The impact of droughts and climate change on sinkhole occurrence. A case study from the evaporite karst of the Fluvia Valley, NE Spain. Sci Total Environ 579:345–358. https://doi.org/10.1016/j.scitotenv.2016.11.091.

  • Lipar M, Szymczak P, White SQ, Webb JA (2021) Solution pipes and focused vertical water flow: geomorphology and modelling. Earth-Sci Rev 218:103635

    Article  Google Scholar 

  • Liu B, Liu ZY, Li SC, Nie LC, Su MX, Sun HF, Fan KR, Zhang XX, Pang YH (2017) Comprehensive surface geophysical investigation of karst caves ahead of the tunnel face: a case study in the Xiaoheyan section of the water supply project from Songhua River, Jilin, China. J Appl Geophys 144:37–49

    Article  Google Scholar 

  • Loke MH, Barker RD (1996) Practical techniques for 3D resistivity surveys and data inversion. Geophysics 44:499–523

    Google Scholar 

  • Loke MH, Dahlin T (2002) A comparison of the Gauss–Newton and quasi-Newton methods in resistivity imaging inversion. J Appl Geophys 49:149–162

    Article  Google Scholar 

  • Loke MH, Ackworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187

    Article  Google Scholar 

  • Loke MH, Dahlin T, Rucker DF (2014) Smoothness-constrained time-lapse inversion of data from 3-D resistivity surveys. Near Surf Geophys 12:5–24. https://doi.org/10.3997/1873-0604.2013025

    Article  Google Scholar 

  • Loke MH (2022) Tutorial: 2-D and 3-D electrical imaging surveys

  • Margielewski W, Urban J (2017) Gravitationally induced non–karst caves: tectonic and morphological constraints, classification, and dating; Polish Flysch Carpathians case study. Geomorphology 296:160–181

    Article  Google Scholar 

  • Marks L, Dzierżek J, Janiszewski R, Kaczorowski J, Lindner L, Majecka A, Makos M, Szymanek M, Tołoczko-Pasek A, Woronko B (2016) Quaternary stratigraphy and paleogeography of Poland. Acta Geol Pol 66(3):403–427. https://doi.org/10.1515/agp-2016-0018

    Article  Google Scholar 

  • Martel R, Castellazzi P, Gloaguen E, Trépanier L, Garfias J (2018) ERT, GPR, InSAR, and tracer tests to characterize karst aquifer systems under urban areas: the case of Quebec City. Geomorphology 310:45–56

    Article  Google Scholar 

  • Martinez-Lopez J, Rey J, Duenas J, Hidalgo C, Benavente J (2013) Electrical tomography applied to the detection of subsurface cavities. J Cave Karst Stud 75:28–37

    Article  Google Scholar 

  • Martinez-Moreno FJ, Galindo-Zaldıvar J, Pedrera A, Teixido T, Ruano P, Pena JA, Gonzalez-Castillo L, Ruiz-Constan A, Lopez-Chicano M, Martın-Rosales W (2014) Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). J Appl Geophys 107:149–162. https://doi.org/10.1016/j.jappgeo.2014.05.021

    Article  Google Scholar 

  • Martorana R, Fiandaca G, Casas Ponsati A, Cosentino PL (2009) Comparative tests on different multi-electrode arrays using models in near-surface geophysics. J Geophys Eng 6:1–20. https://doi.org/10.1088/1742-2132/6/1/001

    Article  Google Scholar 

  • McCrackin CW, Kiflu HG, Kruse SE, van Beynen PE, Polk JS, Miller B (2022) 3D resistivity survey over mapped caves in eogenetic karst terrane, west-central Florida, USA. J Cave Karst Stud 84(1):1–13. https://doi.org/10.4311/2017ES0125

    Article  Google Scholar 

  • Mikita T, Balková M, Bajer A, Cibulka M, Patočka Z (2020) Comparison of different remote sensing methods for 3D modeling of small rock outcrops. Sensors 20(6):1663. https://doi.org/10.3390/s20061663

    Article  Google Scholar 

  • Mohamed AME, El-Hussain I, Deif A, Araffa SAS, Mansour K, Al-Rawas G (2019) Integrated ground penetrating radar, electrical resistivity tomography and multichannel analysis of surface waves for detecting near-surface caverns at Duqm area, Sultanate of Oman. Near Surf Geophys. https://doi.org/10.1002/nsg.12054

    Article  Google Scholar 

  • Morawiecka I, Walsh P (1997) A study of solution pipes preserved in the Miocene limestones (Staszów, Poland). Acta Carsol 26(2):337–347

    Google Scholar 

  • Mycielska-Dowgiałło E (1956) Formy krasowe na północ od Osieka Sandomierskiego. Przegląd Geograficzny 32(4):575–585

    Google Scholar 

  • Mycielska-Dowgiałło E (1965) Rozwój geomorfologiczny południowo-wschodniej części Wyżyny sandomiesrkiej w górnym miocenie i pliocenie. Przegląd Geograficzny 27(4):637–649

    Google Scholar 

  • Nam BH, Kim YJ, Youn H (2020) Identification and quantitative analysis of sinkhole contributing factors in Florida’s Karst. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105610

    Article  Google Scholar 

  • Nawrocki W, Gołębiowski T (2015) Sprawozdanie z wyników badań różnych typów georadarów w podłożu krasowym. Politechnika Krakowska, Zakład Badań Nieniszczących KPG Sp. z o.o

  • Nawrocki W, Pieczonka J (2021) Badania georadarowe w rejonie ulicy Teofila Królika w Tarnowskich Górach woj. Śląskie. Opracowanie. Zakład Badań Nieniszczących KPG Sp. z o.o. Kraków

  • Nawrocki W, Pieczonka J (2022) Sprawozdanie z badań georadarowych rejonu degradacji podłoża na posesjach przy ul. Tokarskiej nr 12 i 14 w Krakowie. Opracowanie. Zakład Badań Nieniszczących KPG Sp. z o.o. Kraków

  • Nawrocki W, Pieczonka J (2023) Sprawozdanie z badania rejonu w pobliżu zapadliska powstałego w zieleńcu przy stacji benzynowej BP w ul. Kamieńskiego w Krakowie. Opracowanie. Zakład Badań Nieniszczących KPG Sp. z o.o. Kraków

  • Nawrocki W, Antosiewicz A, Pieczonka J (2017) Badania georadarowe podłoża krasowego budowanej Obwodnicy Północnej Jaworzna, odcinek 3, ul. Szczakowska – ul. Św. Wojciecha (odcinek od km 0 + 150 do km 0 + 410). Opracowanie. Zakład Badań Nieniszczących KPG Sp. z o.o. Kraków

  • Nawrocki W, Pasierb B, Pieczonka J (2022) Badania geofizyczne w celu wykonania badań zapadliska krasowego w sąsiedztwie budynku wielorodzinnego przy ul. Gen. B. Roi 6A w Krakowie. Opracowanie. Zakład Badań Nieniszczących KPG Sp. z o.o. Kraków

  • Okafor IU, Anakwuba EK, Okpara AO, Udegbunam IE, Onyebum T, Aniwetalu EU (2021) Investigation of karst features at Ogbunike area, south-eastern Nigeria using 3D resistivity and GIS methods. J Environ Geol 5(5):1–7

    Google Scholar 

  • Oszczypko N, Ślączka A, Żytko K (2008) Tectonic subdivision of Poland: Polish Outer Carpathians and their foredeep. Przegląd Geologiczny 56(10):927–935

    Google Scholar 

  • OYO (1988) OYO Georadar I Manual. OYO Corporation, Tsukuba

    Google Scholar 

  • Panjamani A, Rohit D, Prabhakaran A, Vidyaranya B (2018) Identification of karstic features in lateritic soil by an integrated geophysical approach. Pure Appl Geophys 175(3):4515–4536. https://doi.org/10.1007/s00024-018-1908-8

    Article  Google Scholar 

  • Panno SV, Kelly WR, Scott J, Zheng W, McNeish R, Holm N, Baranski EL (2019) Microplastic contamination in karst groundwater systems. Groundwater 57(2):189–196. https://doi.org/10.1111/gwat.12862

    Article  Google Scholar 

  • Papadopoulos NG, Tsourlos P, Tsokas GN, Sarris A (2007) Efficient ERT measuring and inversion strategies for 3D imaging of buried antiquities. Near Surf Geophys 5(6):349–361. https://doi.org/10.3997/1873-0604.2007017

    Article  Google Scholar 

  • Papadopoulou-Vrynioti K, Bathrellos GD, Skilodimou HD, Kaviris G, Makropoulos K (2013) Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng Geol 158:77–88. https://doi.org/10.1016/j.enggeo.2013.02.009

    Article  Google Scholar 

  • Pasierb B (2015) Numerical evaluation of 2D electrical resistivity tomography for subsoil investigations. Technical transactions 112(24). Environ Eng Issue 2:101–112. https://doi.org/10.4467/2353737XCT.15.230.4616

    Article  Google Scholar 

  • Pasierb B (2022) The application of the 2D/3D electrical resistivity tomography (ERT) method in investigating the carbonate karst of the Zakrzówek Horst. Geol Geophys Environ 48(3):319–327. https://doi.org/10.7494/geol.2022.48.3.319

    Article  Google Scholar 

  • Pasierb B, Nawrocki W (2020) Not only the “Gold Train” – the “Underground Town” of Riese (Poland)—the ambiguity of interpretation of ERT and GPR methods. Archaeol Prospect 27(4):361–375. https://doi.org/10.1002/arp.1779

    Article  Google Scholar 

  • Pasierb B, Porzucek S, Urban J, Kasza A, Chwalik-Borowiec A (2020) Wiśniówki, Jaskinia Nowa in Wiśniówki - geophysical methods of examining gypsum karst. In: Chapter in a monograph. Materials of the 54th speleological symposium, Krzyżanowice Dolne 15–18.10.2020 (in Polish)

  • Pejić M (2013) Design and optimization of laser scanning for tunnel geometry inspection. Tunn Undergr Space Technol 37:199–206. https://doi.org/10.1016/j.tust.2013.04.004

    Article  Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, London, pp 682–749

    Google Scholar 

  • Roniewicz P, Wysocka A (2001) Remarks on miocene sedimentation in the area between Szydłow and Smerdyna, southeastern margin of the Holy Cross Mts (Central Poland). Przegląd Geologiczny 49(7):639–642

    Google Scholar 

  • Rubinowski Z, Wróblewski T, Gągoł J (eds) (1986) Atlas geologiczno-surowcowy Gór Świętokrzyskich 1:50 000. Wydawnictwa Geologiczne, Warszawa, pp 1–141

    Google Scholar 

  • Rutkowski J (1976) Detrital sarmatian deposits on the southern margin of the holy cross mountains. Prace Geologiczne Oddział PAN w Krakowie 100:71

    Google Scholar 

  • Rutkowski J (1980) On the volumetric density of the Miocene limestone near Pińczów and Staszów (O zmienności gęstości objętościowej wapieni miocenu okolic Pińczowa i Staszowa). Sprawozdania z Posiedzień Komisji Naukowych PAN, Oddział Kraków 21:111–113

    Google Scholar 

  • Solon J, Borzyszkowski J, Bidłasik M, Richling A, Badora K, Balon J, Brzezińska-Wójcik T, Chabudziński Ł, Dobrowolski R, Grzegorczyk I, Jodłowski M, Kistowski M, Kot R, Krąż P, Lechnio J, Macias A, Majchrowska A, Malinowska E, Migoń P, Myga-Piątek U, Nita J, Papińska E, Rodzik J, Strzyż M, Terpiłowski S, Ziaja W (2018) Physico-geographical mesoregions of Poland: verification and adjustment of boundaries on the basis of contemporary spatial data. Geographica Polonica 91(2):143–170

    Article  Google Scholar 

  • Stierman DJ (2006) Geophysical detection of caves and karstic areas. In: Gunn J (ed) Encyclopedia of caves and karst sciences, pp 780–787

  • Szalai S, Novak A, Szarka L (2009) Depth of investigation and vertical resolution of surface geoelectric arrays. J Environ Eng Geophys 14(1):15–23. https://doi.org/10.2113/JEEG14.1.15

    Article  Google Scholar 

  • Thomas B, Roth M (1999) Evaluation of site characterization methods for sinkholes in Pennsylvania and New Jersey. Eng Geol 52(1–2):147–152. https://doi.org/10.1016/S0013-7952(98)00068-4

    Article  Google Scholar 

  • Torrese P (2020) Investigating karst aquifers: using pseudo-3-D electrical resistivity tomography to identify major karst features. J Hydrol. https://doi.org/10.1016/j.jhydrol.2019.124257

    Article  Google Scholar 

  • Urban J (1998) Jamy w Podwalu N-2.83. W: Gubała J., Kasza A., Urban J., Jaskinie Niecki Nidziańskiej. Polskie Towarzystwo Przyjaciół Nauk o Ziemi, Warszawa, pp 145–147

  • Vennari C, Parise MA (2022) Chronological database about natural and anthropogenic Sinkholes in Italy. Geosciences. https://doi.org/10.3390/geosciences12050200

    Article  Google Scholar 

  • Verdet C, Sirieix C, Antoine Marache A, Joëlle Riss J, Portais J-Ch (2020) Detection of undercover karst features by geophysics (ERT) Lascaux cave hill. Geomorphology. https://doi.org/10.1016/j.geomorph.2020.107177

    Article  Google Scholar 

  • Walczowski A (1965) Szczegółowa mapa geologiczna Polski 1:50 000, arkusz Staszów. Wydawnictwa Geologiczne, Warszawa

  • Walczowski A (1968) Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50 000, arkusz Staszów. Wydawnictwa Geologiczne, Warszawa, p 90

  • Walsh P, Morawiecka-Zacharz I (2001) A dissolution pipe palaeokarst of mid-Pleistocene age preserved in 327–350. https://doi.org/10.1016/S0031-0182(01)00317-0

  • Waltham T, Bell FG, Culshaw MG (2005) Sinkholes and Subsidence. Springer, Berlin, p 382

    Google Scholar 

  • Williams PW (2006) Doline. In: Goudie AS (ed) Encyclopedia of geomorphology, pp 266–270

  • Xu S, Sirieix C, Ferrier C, Lacanette-Puyo D, Riss J, Malaurent P (2015) A geophysical tool for the conservation of a decorated cave—a case study for the Lascaux cave. Archaeol Prospect 22(4):283–292. https://doi.org/10.1002/arp.1513

    Article  Google Scholar 

  • Zhang W, Zhao Q, Huang R, Chen J, Xue Y, Xu P (2016) Identification of structural domains considering the size effect of rock mass discontinuities: a case study of underground excavation in Baihetan Dam, China. Tunn Undergr Space Technol 51:75–83. https://doi.org/10.1016/j.tust.2015.10.026

    Article  Google Scholar 

  • Zhu J, Currens JC, Dinger JS (2011) Challenges of using electrical resistivity method to locate karst conduits—a field case in the Inner Bluegrass Region, Kentucky. J Appl Geophys 75(3):523–530

    Article  Google Scholar 

  • Zieliński A, Komorowski A, Łyskowski M, Mazurkiewicz E, Gajek G (2016) Recently discovered cave in Podmaleniec village near Staszów. Materiały 50. Sympozjum Speleologicznego, Kielce-Chęciny 20–23.10.2016. Sekcja Speleologiczna PTP im. Kopernika, Kraków, pp 165–166

  • Zonge KL (1972) Electrical Parameters of Rocks as Applied to Geophysics. The University of Arizona Ph. D. Dissertation.

  • Zuberek M (2010) O niepewności w geofizyce. W: Geofizyka w Górnictwie i Geologii. Sosnowiec: Wydział Nauk o Ziemi Uniwersytetu Śląskiego ISBN: 9788361644132, pp 54–63

Download references

Acknowledgements

The authors would like to thank their colleagues Ewelina Mazurkiewicz, Mikołaj Łyskowski, Andrzej Staszczak from AGH University of Science and Technology, and Artur Zieliński from Jan Kochanowski University in Kielce, for their help during the field measurements.

Funding

The research was financed under statutory activity DS/2020-Ś1 and DS/2023-Ś1 from the Faculty of Environmental Engineering and Energy, Cracow University of Technology, and under statutory funds of the Faculty of Earth Sciences and Spatial Management, Maria Curie-Sklodowska University in Lublin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadetta Pasierb.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasierb, B., Gajek, G., Urban, J. et al. Integrated Geophysical and Geomorphological Studies of Caves in Calcarenite Limestones (Jaskinia pod Świecami Cave, Poland). Surv Geophys (2024). https://doi.org/10.1007/s10712-023-09821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10712-023-09821-9

Keywords

Navigation