Skip to main content
Log in

Genetic signatures of plant resistance genes with known function within and between species

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Plant disease resistance (R) genes have undergone significant evolutionary divergence to cope with rapid changes in pathogens. These highly variable evolutionary patterns may have contributed to diversity in R gene protein families or structures. Here, the evolutionary patterns of 76 identified R genes and their homologs were investigated within and between plant species. Results demonstrated that nucleotide binding sites and leucine-rich-repeat genes located in loci with complex evolutionary histories tended to evolve rapidly, have high variation in copy numbers, exhibit high levels of nucleotide variation and frequent gene conversion events, and also exhibit high non-synonymous to synonymous substitution ratios in LRR regions. However, non-NBS-LRR R genes are relatively well conserved with constrained variation and are more likely to participate in the basic defense system of hosts. In addition, both conserved and highly divergent evolutionary patterns were observed for the same R genes and were consistent with inter- and intra-specific distributions of some R genes. These results thus indicate either continuous or altered evolutionary patterns between and within species. The present investigation is the first attempt to investigate evolutionary patterns among all clearly functional R genes. The results reported here thus provide a foundation for future plant disease studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • And HK, Jones JDG (2003) Plant disease resistance genes. Annurevplant Physiolplant Molbiol 48:575

    Google Scholar 

  • Bittnereddy PD, Crute IR, Holub EB, Beynon JL (2000) RPP13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J 21:177

    Article  CAS  Google Scholar 

  • Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J et al (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:956–963

    Article  CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant. Immune Response Cell 124:803–814

    CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  Google Scholar 

  • Ding J, Araki H, Wang Q, Zhang P, Yang S, Chen JQ, Tian D (2007a) Highly asymmetric rice genomes. BMC Genomics 8:154

    Article  Google Scholar 

  • Ding J, Cheng H, Jin X, Araki H, Yang Y, Tian D (2007b) Contrasting patterns of evolution between allelic groups at a single locus in Arabidopsis. Genetica 129:235–242

    Article  CAS  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  Google Scholar 

  • Hulbert SH, Webb CA, And SMS, Sun Q (2003) Resistance gene complexes: evolution and utilization. Ann Rev Phytopathol 39:285

    Article  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ (1994) Isolation of the tomato Cf-9 Gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  CAS  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K et al (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091

    Article  CAS  Google Scholar 

  • Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW (2004) Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. Plant Cell 16:2870

    Article  CAS  Google Scholar 

  • Kuang H, Caldwell KS, Meyers BC, Michelmore RW (2008) Frequent sequence exchanges between homologs of RPP8 in Arabidopsis are not necessarily associated with genomic proximity. Plant J 54:69–80

    Article  CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of. DNA polymorphism data. Bioinformatics 25:1451

    Article  CAS  Google Scholar 

  • Liu J, Liu X, Dai L, Wang G (2007) Recent progress in elucidating the structure, function and evolution of disease resistance genes in plants. J Genet Genom 34:765–776

    Article  Google Scholar 

  • Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Ann Rev Plant Biol 54:23

    Article  CAS  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418

    CAS  PubMed  Google Scholar 

  • Norusis M, Spss I (2010) IBM SPSS statistics 19 statistical procedures companion. Proc Cambridge Philos Soc 45:354–359

    Google Scholar 

  • Sanseverino W, Roma G, De Simone M, Faino L, Melito S, Stupka E et al (2010) PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucl Acids Res 38:D814

    Article  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132:530–543

    Article  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  Google Scholar 

  • Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400:667–671

    Article  CAS  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD (1995) Molecular genetics of plant disease resistance. Science 268:661–667

    Article  CAS  Google Scholar 

  • Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q (2004) Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J 37:517–527

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731

    Article  CAS  Google Scholar 

  • Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and Effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4

    Article  CAS  Google Scholar 

  • Tian D, Traw MB, Chen JQ, Kreitman M, Bergelson J (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77

    Article  CAS  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY et al (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    Article  CAS  Google Scholar 

  • Wang J, Tan S, Zhang L, Li P, Tian D (2011a) Co-variation among major classes of LRR-encoding genes in two pairs of plant species. J Mol Evol 72:498–509

    Article  CAS  Google Scholar 

  • Wang J, Zhang L, Li J, Lawtonrauh A, Tian D (2011b) Unusual signatures of highly adaptable R-loci in closely-related Arabidopsis species. Gene 482:24

    Article  CAS  Google Scholar 

  • Wu K, Xu T, Guo C, Zhang X, Yang S (2012) Heterogeneous evolutionary rates of Pi2/9 homologs in rice. BMC Genet 13:1–12

    Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW. Science 291(8):118–120

    Article  CAS  Google Scholar 

  • Yang S, Feng Z, Zhang X, Jiang K, Jin X, Hang Y et al (2006) Genome-wide investigation on the genetic variations of rice disease resistance genes. Plant Mol Biol 62:181–193

    Article  CAS  Google Scholar 

  • Yang S, Yuan Y, Wang L, Li J, Wang W, Liu H et al (2012) Great majority of recombination events in Arabidopsis are gene conversion events. Proc Natl Acad Sci USA 109:20992–20997

    Article  CAS  Google Scholar 

  • Yang S, Li J, Zhang X, Zhang Q, Huang J, Chen JQ et al (2013) Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease. Proc Natl Acad Sci USA 110:18572–18577

    Article  CAS  Google Scholar 

  • Zhang X, Yang S, Wang J, Jia Y, Huang J, Tan S et al (2015) A genome-wide survey reveals abundant rice blast R genes in resistant cultivars. Plant J 84:20–28

    Article  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K et al (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genom 271:402–415

    Article  CAS  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10

    Article  CAS  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764–767

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Jiangsu Planned Projects for Postdoctoral Research Funds (1601080C), the Jiangsu University Natural Science Foundation Funded Project (17KJB310015), and the Research Foundation for Talented Scholars at Xuzhou Medical University (D2015001, D2017020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Sha.

Ethics declarations

Conflict of interest

All authors declare that they no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 464 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Sha, Y., Hu, J. et al. Genetic signatures of plant resistance genes with known function within and between species. Genetica 146, 517–528 (2018). https://doi.org/10.1007/s10709-018-0044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-018-0044-9

Keywords

Navigation