Skip to main content
Log in

How does molecular-assisted identification affect our estimation of α, β and γ biodiversity? An example from understory red seaweeds (Rhodophyta) of Laminaria kelp forests in Brittany, France

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Using two distinct identification methods, one based on morphological characters only and the other combining morphological and molecular characters (integrative identification method), we investigated the differences in the biodiversity patterns of red seaweed communities associated with kelp forests at various spatial scales: the regional diversity of Brittany, France (γ-diversity), the local diversity at different Breton sites (α-diversity) and the differentiation in species diversity and abundances among those sites (β-diversity). To characterise α and β diversities, we conducted an initial survey in winter 2011 at 20 sites belonging to four different sub-regions, with specimens collected from six quadrats of 0.10 m2 at each site, three in the tidal zone dominated by Laminaria digitata and three in the zone dominated by Laminaria hyperborea. To further characterise the regional diversity, we carried out another survey combining several sampling methods (quadrats and visual census) in different seasons (winter, spring and summer) and different years (2011 and 2012). In all, we collected 1990 specimens that were assigned to 76 taxa with the identification method based on morphological characters and 139 taxa using the integrative method. For γ and α diversity, the use of molecular characters revealed several cases of cryptic diversity and both increased the number of identified taxa and improved their taxonomic resolution. However, the addition of molecular characters for specimen identification only slightly affected estimates of β-diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson M, Gorley RN, Clarke RK (2008) Permanova + for primer: guide to software and statistical methods. Plymouth Marine Laboratory, Plymouth

    Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42. doi:10.1093/nar/gks1195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155. doi:10.1016/j.tree.2006.11.004

    Article  PubMed  Google Scholar 

  • Bortolus A (2008) Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37:114–118. doi:10.1579/0044-7447(2008)37[114:ECITBS]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Brodie JA, Irvine LM (2003) Seaweeds of the British Isles, vol 1, Rhodophyta, pt 3B, Bangiophycidae. The Natural History Museum, London, UK

  • Bunker FSD, Brodie JA, Maggs CA, Bunker AR (2010) Seasearch guide to seaweeds of Britain and Ireland. Marine Conservation Society, Ross-on-Wye

    Google Scholar 

  • Cabioc’h J, Floc’h J-Y, Le Toquin A, Boudouresque CF, Meinesz A, Verlaque M (2006) Guide des algues des mers d’Europe. Delachaux et Niestlé, Paris

    Google Scholar 

  • Chesters D (2013) collapsetypes.pl [computer software http://sourceforge.net/projects/collapsetypes/]

  • Clarke KR, Gorley RN (2006) PRIMER ver. 6. User Manual/Tutorial. PRIMER-E, Plymouth, UK

  • Clarkston BE, Saunders GW (2013) Resolving species diversity in the red algal genus Callophyllis (Kallymeniaceae, Gigartinales) in Canada using molecular assisted alpha taxonomy. Eur J Phycol 48:27–46. doi:10.1080/09670262.2013.767943

    Article  Google Scholar 

  • Coyer J, Peters A, Hoarau G, Stam W, Olsen J (2002) Hybridization of the marine seaweeds, Fucus serratus and Fucus evanescens (Heterokontophyta: Phaeophyceae) in a 100-year-old zone of secondary contact. Proc R Soc Lond, Ser B: Biol Sci 269:1829–1834. doi:10.1098/rspb.2002.2093

    Article  CAS  Google Scholar 

  • Cremades J, Barreiro R, Maneiro I, Saunders GW (2011) A new taxonomic interpretation of the type of Plocamium cartilagineum (Plocamiales, Florideophyceae) and its consequences. Eur J Phycol 46:125–142. doi:10.1080/09670262.2011.565129

    Article  Google Scholar 

  • De Clerck O, Guiry M, Leliaert F, Samyn Y, Verbruggen H (2012) Algal taxonomy: a road to nowhere? J Phycol 49:215–225. doi:10.1111/jpy.12020

    Article  Google Scholar 

  • Destombe C, Valero M, Guillemin M-L (2010) Delineation of two sibling red algal species, Gracilaria gracilis and Gracilaria dura (Gracilariales, Rhodophyta), using multiple DNA markers: resurrection of the species G. dura previously described in the Northern Atlantic 200 years ago. J Phycol 46:720–727. doi:10.1111/j.1529-8817.2010.00846.x

    Article  CAS  Google Scholar 

  • Díaz-Tapia P, Bárbara I, Berecibar E (2013) Vegetative and reproductive morphology of Polysiphonia tripinnata (Rhodomelaceae, Rhodophyta): a new record from the European Atlantic coast. Bot Mar 56:151–160. doi:10.1515/bot-2012-0205

    Article  Google Scholar 

  • Dixon PS, Irvine LM (1977) Seaweeds of the British Isles, vol 1, Rhodophyta, pt 1, Introduction, Nemaliales, Gigartinales. British Museum (Natural History), London, UK

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engel C, Daguin C, Serrão E (2005) Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Mol Ecol 14:2033–2046. doi:10.1111/j.1365-294X.2005.02558.x

    Article  CAS  PubMed  Google Scholar 

  • Feldmann J, Magne MF (1964). Additions à l’inventaire de la flore marine de Roscoff: Algues, Champignons, Lichens. Editions de la Station biologique de Roscoff, Roscoff

  • Gallon R, Ysnel F, Feunteun E (2013) Optimization of an “in situ” subtidal rocky-shore sampling strategy for monitoring purposes. Mar Pollut Bull 74:253–263. doi:10.1016/j.marpolbul.2013.06.049

    Article  CAS  PubMed  Google Scholar 

  • Gallon RK, Robuchon M, Leroy B, Le Gall L, Valero M, Feunten E (2014) Twenty years of observed and predicted changes in subtidal red seaweed assemblages along a biogeographical transition zone: inferring potential causes from environmental data. J Biogeogr. doi:10.1111/jbi.12380

    Google Scholar 

  • Geoffroy A, Le Gall L, Destombe C (2012) Cryptic introduction of the red alga Polysiphonia morrowii Harvey (Rhodomelaceae, Rhodophyta) in the North Atlantic Ocean highlighted by a DNA barcoding approach. Aquat Bot 100:67–71. doi:10.1016/j.aquabot.2012.03.002

    Article  CAS  Google Scholar 

  • Gill BA, Harrington RA, Kondratieff BC, Zamudio KR, Poff NL, Funk WC (2014) Morphological taxonomy, DNA barcoding, and species diversity in southern rocky mountain headwater streams. Freshw Sci 33:288–301. doi:10.1086/674526

    Article  Google Scholar 

  • Gotelli NJ (2004) A taxonomic wish–list for community ecology. Philos Trans R Soc Lond, Ser B: Biol Sci 359:585–597. doi:10.1098/rstb.2003.1443

    Article  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) Seaview version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224. doi:10.1093/molbev/msp259

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2014). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 20th May 2014

  • Harper JT, Saunders GW (2001) The application of sequences of the ribosomal cistron to the systematics and classification of the florideophyte red algae (Florideophyceae, Rhodophyta). Cah Biol Mar 42:25–38

    Google Scholar 

  • Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proc R Soc Lond, Ser B: Biol Sci 270:313–321. doi:10.1098/rspb.2002.2218

    Article  CAS  Google Scholar 

  • Heinrichs J, Kreier H-P, Feldberg K, Schmidt AR, Zhu R-L, Shaw B, Shaw AJ, Wissemann V (2011) Formalizing morphologically cryptic biological entities: new insights from DNA taxonomy, hybridization, and biogeography in the leafy liverwort Porella platyphylla (Jungermanniopsida, Porellales). Am J Bot 98:1252–1262. doi:10.3732/ajb.1100115

    Article  PubMed  Google Scholar 

  • Hind KR, Saunders GW (2013) A molecular phylogenetic study of the tribe Corallineae (Corallinales, Rhodophyta) with an assessment of genus-level taxonomic features and descriptions of novel genera. J Phycol 49:103–114. doi:10.1111/jpy.12019

    Article  Google Scholar 

  • Hirst AJ (2006) Influence of taxonomic resolution on multivariate analyses of arthropod and macroalgal reef assemblages. Mar Ecol Prog Ser 324:83–93. doi:10.3354/meps324083

    Article  Google Scholar 

  • Hu ZM, Li W, Li JJ, Duan DL (2011) Post-Pleistocene demographic history of the North Atlantic endemic Irish moss Chondrus crispus: glacial survival, spatial expansion and gene flow. J Evol Biol 24:505–517. doi:10.1111/j.1420-9101.2010.02186.x

    Article  CAS  PubMed  Google Scholar 

  • Irvine LM (1983) Seaweeds of the British Isles, vol. 1, Rhodophyta, pt 2A, Cryptonemiales (sensu stricto), Palmariales, Rhodymeniales. British Museum (Natural History), London, UK

  • Irvine LM, Chamberlain YM, Maggs CA (1994) Seaweeds of the British Isles, vol 1, Rhodophyta, pt 2B, Corallinales, Hildenbrandiales. The Natural History Museum, London, UK

  • Kaartinen R, Stone GN, Hearn J, Lohse K, Roslin T (2010) Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecol Entomol 35:623–638. doi:10.1111/j.1365-2311.2010.01224.x

    Article  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216. doi:10.1146/annurev.es.24.110193.001201

    Article  Google Scholar 

  • Kucera H, Saunders GW (2012) A survey of Bangiales (Rhodophyta) based on multiple molecular markers reveals cryptic diversity. J Phycol 48:869–882. doi:10.1111/j.1529-8817.2012.01193.x

    Article  Google Scholar 

  • Le Gall L, Saunders GW (2010) DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J Phycol 46:374–389. doi:10.1111/j.1529-8817.2010.00807.x

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, second english edition. Elsevier Science, Amsterdam

    Google Scholar 

  • Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM, Zuccarello GC, De Clerck O (2014) DNA-based species delimitation in algae. Eur J Phycol 49:179–196. doi:10.1080/09670262.2014.904524

    Article  Google Scholar 

  • L’Hardy-Halos M, Castric-Fey A, Girard-Descatoire A, Lafargue F (1973) Recherches en scaphandre autonome sur le peuplement végétal du substrat rocheux: l’Archipel de Glénan. Bull Soc Scient Bretagne 48:103–128

    Google Scholar 

  • Lindstrom SC, Hughey JR, Martone PT (2011) New, resurrected and redefined species of Mastocarpus (Phyllophoraceae, Rhodophyta) from the northeast Pacific. Phycologia 50:661–683. doi:10.2216/10-38.1

    Article  Google Scholar 

  • Maggs CA, Hommersand MH (1993) Seaweeds of the British Isles, vol 1, Rhodophyta, pt 3A, Ceramiales. The Natural History Museum, London, UK

  • Maggs CA, Le Gall L, Mineur F, Provan J, Saunders GW (2013) Fredericqia deveauniensis, gen. et sp. nov. (Phyllophoraceae, Rhodophyta), a new cryptogenic species. Cryptogam Algol 34:273–296. doi:10.7872/crya.v34.iss2.2013.273

    Article  Google Scholar 

  • May RM (1988) How many species are there on earth? Science 241:1441–1449. doi:10.1126/science.241.4872.1441

    Article  CAS  PubMed  Google Scholar 

  • McDevit DC, Saunders GW (2010) A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia 49:235–248

    Article  CAS  Google Scholar 

  • Moritz C, Cicero C (2004) DNA barcoding: promise and pitfalls. PLoS Biol 2:e354. doi:10.1371/journal.pbio.0020354

    Article  PubMed Central  PubMed  Google Scholar 

  • Neiva J, Pearson GA, Valero M, Serrão EA (2010) Surfing the wave on a borrowed board: range expansion and spread of introgressed organellar genomes in the seaweed Fucus ceranoides L. Mol Ecol 19:4812–4822. doi:10.1111/j.1365-294X.2010.04853.x

    Article  CAS  PubMed  Google Scholar 

  • Payo DA, Leliaert F, Verbruggen H, D’hondt S, Calumpong HP, De Clerck O (2013) Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proc R Soc Lond Ser B Biol Sci 280: 20122660. doi:10.1098/rspb.2012.2660

  • Peña V, De Clerck O, Afonso-Carrillo J, Ballesteros E, Bárbara I, Barreiro R, Le Gall L. An integrative systematic approach to species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. Eur J Phycol In press

  • Pfenninger M, Nowak C, Kley C, Steinke D, Streit B (2007) Utility of DNA taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Mol Ecol 16:1957–1968. doi:10.1111/j.1365-294X.2006.03136.x

    Article  CAS  PubMed  Google Scholar 

  • Pires AC, Marinoni L (2010) DNA barcoding and traditional taxonomy unified through Integrative Taxonomy: a view that challenges the debate questioning both methodologies. Biota Neotrop 10:339–346. doi:10.1590/S1676-06032010000200035

    Google Scholar 

  • Provan J, Maggs CA (2012) Unique genetic variation at a species’ rear edge is under threat from global climate change. Proc R Soc B 279:39–47. doi:10.1098/rspb.2011.0536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Provan J, Wattier RA, Maggs CA (2005) Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the english channel. Mol Ecol 14:793–803. doi:10.1111/j.1365-294X.2005.02447.x

    Article  CAS  PubMed  Google Scholar 

  • Raffaelli D, Hawkins S (1996) Intertidal ecology. Chapman & Hall, London

    Book  Google Scholar 

  • Rámirez ME, Contreras-Porcia L, Guillemin M-L, Brodie J, Valdivia C, Flores-Molina MR, Nuñez A, Bulboa Contador C, Lovazzono C (2014) Pyropia orbicularis sp. nov. (Rhodophyta, Bangiaceae) based on a population previously known as Porphyra columbina from the central coast of Chile. Phytotaxa 158:21. doi:10.11646/phytotaxa.158.2.2

    Article  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7:355–364. doi:10.1111/j.1471-8286.2007.01678.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robuchon M, Le Gall L, Mauger S, Valero M (2014a) Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Mol Ecol 23:2669–2685. doi:10.1111/mec.12774

    Article  PubMed  Google Scholar 

  • Robuchon M, Le Gall L, Gey D, Valero M, Vergés A (2014b) Kallymenia crouaniorum (Kallymeniaceae, Rhodophyta), a new red algal species from the Laminaria hyperborea understory community. Eur J Phycol. doi: 10.1080/09670262.2014.971348

  • Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans R Soc Lond, Ser B: Biol Sci 360:1879–1888. doi:10.1098/rstb.2005.1719

    Article  CAS  Google Scholar 

  • Saunders GW (2009) Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals the invasive species Gracilaria vermiculophylla in British Columbia. Mol Ecol Resour 9:140–150. doi:10.1111/j.1755-0998.2009.02639.x

    Article  CAS  PubMed  Google Scholar 

  • Saunders GW, Lehmkuhl VK (2005) Molecular divergence and morphological diversity among four cryptic species of Plocamium (Plocamiales, Florideophyceae) in northern Europe. Eur J Phycol 40:293–312. doi:10.1080/09670260500192935

    Article  CAS  Google Scholar 

  • Saunders GW, McDevit DC (2012) Methods for DNA barcoding photosynthetic protists emphasizing the macroalgae and diatoms. In: Lopez I, Erickson DL (eds) DNA barcodes: methods and protocols, vol 858. Methods in Molecular Biology. Springer, pp 207–222. doi:10.1007/978-1-61779-591-6_10

  • Saunders GW, McDevit DC (2013) DNA barcoding unmasks overlooked diversity improving knowledge on the composition and origins of the Churchill algal flora. BMC Ecol 13: 9. doi:10.1186/1472-6785-13-9

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. doi:10.1002/j.1538-7305.1948.tb00917.x

    Article  Google Scholar 

  • Sherwood A, Kurihara A, Conklin K, Sauvage T, Presting G (2010a) The Hawaiian Rhodophyta biodiversity survey (2006–2010): a summary of principal findings. BMC Plant Biol 10: 258. doi:10.1186/1471-2229-10-258

  • Sherwood AR, Sauvage T, Kurihara A, Conklin KY, Presting GG (2010b) A comparative analysis of COI, LSU and UPA marker data for the Hawaiian florideophyte Rhodophyta: implications for DNA barcoding of red algae. Cryptogam Algol 31:451–465

    Google Scholar 

  • Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evol 3:4016–4038. doi:10.1002/ece3.774

    Article  PubMed Central  PubMed  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana AL, Lourie SA (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57:573–583. doi:10.1641/B570707

    Article  Google Scholar 

  • Sutherland JE, Lindstrom SC, Nelson WA, Brodie J, Lynch MDJ, Hwang MS, Choi H-G, Miyata M, Kikuchi N, Oliveira MC, Farr T, Neefus C, Mols-Mortensen A, Milstein D, Müller KM (2011) A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J Phycol 47:1131–1151. doi:10.1111/j.1529-8817.2011.01052.x

    Article  Google Scholar 

  • Sweeney BW, Battle JM, Jackson JK, Dapkey T (2011) Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality? J North Am Benthol Soc 30:195–216. doi:10.1899/10-016.1

    Article  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willersev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050. doi:10.1111/j.1365-294X.2012.05470.x

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003) A plea for DNA taxonomy. Trends Ecol Evol 18:70–74. doi:10.1016/S0169-5347(02)00041-1

    Article  Google Scholar 

  • Tellier F, Meynard AP, Correa JA, Faugeron S, Valero M (2009) Phylogeographic analyses of the 30° S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol Phylogenet Evol 53:679–693. doi:10.1016/j.ympev.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  • Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24:110–117. doi:10.1016/j.tree.2008.09.011

    Article  PubMed  Google Scholar 

  • van der Strate HJ, Boele-Bos SA, Olsen JL, van de Zande L, Stam WT (2002) Phylogeographic studies in the tropical seaweed Cladophoropsis membranacea (Chlorophyta, Ulvophyceae) reveal a cryptic species complex. J Phycol 38:572–582. doi:10.1046/j.1529-8817.2002.01170.x

    Article  Google Scholar 

  • Verbruggen H (2014) Morphological complexity, plasticity, and species diagnosability in the application of old species names in DNA-based taxonomies. J Phycol 50:26–31. doi:10.1111/jpy.12155

    Article  CAS  Google Scholar 

  • Waite IR, Herlihy AT, Larsen DP, Urquhart NS, Klemm DJ (2004) The effects of macroinvertebrate taxonomic resolution in large landscape bioassessments: an example from the Mid-Atlantic Highlands, USA. Freshw Biol 49:474–489. doi:10.1111/j.1365-2427.2004.01197.x

    Article  Google Scholar 

  • Walker RH, Brodie J, Russell S, Irvine LM, Orfanidis S (2009) Biodiversity of coralline algae in the Northeastern Atlantic including Corallina caespitosa sp. nov. (Corallinoideae, Rhodophyta). J Phycol 45:287–297. doi:10.1111/j.1529-8817.2008.00637.x

    Article  Google Scholar 

  • Wernberg T, Kendrick GA, Phillips JC (2003) Regional differences in kelp-associated algal assemblages on temperate limestone reefs in south-western Australia. Divers Distrib 9:427–441. doi:10.2307/3246711

    Article  Google Scholar 

Download references

Acknowledgments

M.R. was funded by a PhD fellowship from the French government (Ministère de l’Enseignement Supérieur et de la Recherche) and a post-doctoral fellowship from the Labex BCDiv ‘Diversités biologiques et culturelles: origines, évolution, interactions, devenir’ (MNHN, INEE [CNRS]). We are extremely grateful to the numerous people that helped us during sampling including those of the ‘Service Mer et Observation’ of the Station Biologique de Roscoff, the divers from the Dinard Marine Lab (MNHN) and the ‘Parc Naturel Marin d’Iroise’ as well as all the volunteers from the Station Biologique de Roscoff for low-tide field work. We warmly thank L. Couceiro, F. Lerck, A. Boisrobert, L. Jaugeon and V. Peña for their precious help in morphology-based identifications. The molecular data were mostly produced at the Service de Systématique Moléculaire of the Muséum National d’Histoire Naturelle (CNRS-UMS 2700) with funds provided by the ATM ‘Taxonomie moléculaire: DNA Barcode et gestion durable des collections’ and by an agreement with the ‘Parc Naturel Marin d’Iroise’ (CNRS-UPMC-PNMI, LS 64816). We thank S. Dalbarade-Morvan for helping us in producing the molecular data. Sequencing was performed by Genoscope through the projects entitled ‘Speed ID’ and ‘Bibliothèque du Vivant’. All contributors to the local library of sequences of the Phyco group at the Museum are sincerely thanked. We sincerely thank the two anonymous reviewers for their fruitful comments and the invited editors D. Joly and D. Faure for inviting us to contribute to this special issue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Line Le Gall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10709_2014_9796_MOESM1_ESM.xlsx

Supplementary material 1 (XLSX 161 kb) Table S1 Collection and identification information for red seaweed specimens used in this study

10709_2014_9796_MOESM2_ESM.docx

Supplementary material 2 (DOCX 24 kb) Table S2 Results of the pairwise tests testing the differences in log-transformed species abundances of red seaweed communities (a) between communities understory of Laminaria digitata (Ld) and Laminaria hyperborea (Lh) within each sub-region (SMB: St Malo Bay, MoB: Morlaix Bay, IrS: Iroise Sea, SBr: Southern Brittany) and (b) among sub-regions for each kelp canopy species; t, the t-statistic; and P(perm), the probability calculated by permutations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robuchon, M., Valero, M., Gey, D. et al. How does molecular-assisted identification affect our estimation of α, β and γ biodiversity? An example from understory red seaweeds (Rhodophyta) of Laminaria kelp forests in Brittany, France. Genetica 143, 207–223 (2015). https://doi.org/10.1007/s10709-014-9796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-014-9796-z

Keywords

Navigation