Skip to main content

Advertisement

Log in

Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Increasing evidence is showing a greater potential for carbon (C) sequestration in paddy soils than in upland soils. However, the mechanisms underlying long-term accumulation and protection of soil organic carbon (SOC) in paddy fields have not been well documented. In the present study, five soil C fractions were separated by physical fractionation in a subtropical paddy field following 27-year differential fertilization regimes (started in 1981). Results showed that, compared to the initial level, long-term rice (Oryza sativa L.) cropping increased SOC concentrations by 28.8, 30.1, 30.8, and 61.6% in the non-fertilized (CK), nitrogen (N), nitrogen-phosphorus-potassium (NPK), and NPK combined with farmyard manure (NPK + FYM) treatments, respectively. Application of FYM enhanced the formation of macroaggregates (>2,000 and 250–2,000 μm), whereas no significant differences in aggregate-size distribution were found among the CK, N, and NPK treatments. Inorganic fertilization (N and NPK) did not affect the concentration of either total SOC or any C fraction as compared with the CK, whereas application of FYM significantly increased the concentrations both in total SOC (25.5%) and in all C fractions, except coarse particulate organic matter (cPOM). Carbon in the paddy soil was dominated by free silt and clay (s + c_f) and intra-aggregate particulate organic matter within microaggregates (iPOM_m) in all treatments that accounted for 46.4–49.6% and 25.1–27.2% of the total SOC, respectively. Furthermore, the differences in C in the iPOM_m and s + c_f fractions between the CK and NPK + FYM treatments accounted for 53.2 and 38.8% of the differences in total SOC stocks, respectively. These results indicate that SOC originating from manure is stored mainly in fractions with slow turnover (i.e., iPOM_m and s + c_f), which may benefit the long-term C sequestration in paddy soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abiven S, Menasseri S, Chenu C (2009) The effects of organic inputs over time on soil aggregate stability-a literature analysis. Soil Biol Biochem 41:1–12. doi:10.1016/j.soilbio.2008.09.015

    Article  CAS  Google Scholar 

  • Amundson R (2001) The carbon budget in soils. Annu Rev Earth Planet Sci 29:535–562. doi:10.1146/annurev.earth.29.1.535

    Article  CAS  Google Scholar 

  • Angers DA, Recous S, Aita C (1997) Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13C15N-labelled wheat straw in situ. Eur J Soil Sci 48:295–300. doi:10.1111/j.1365-2389.1997.tb00549.x

    Article  Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1083. doi:10.1071/S97004

    Article  Google Scholar 

  • Balesdent J, Chenu C, Balabane M (2000) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Tillage Res 53:215–230. doi:10.1016/S0167-1987(99)00107-5

    Article  Google Scholar 

  • Blanco-Canqui H, Lal R (2004) Mechanisms of carbon sequestration in soil aggregates. Crit Rev Plant Sci 23:481–504. doi:10.1080/07352680490886842

    Article  CAS  Google Scholar 

  • Cai Z (1996) Effect of land use on organic carbon storage in soils in eastern China. Water Air Soil Pollut 91:383–393. doi:10.1007/BF00666272

    Article  CAS  Google Scholar 

  • Del Galdo I, Six J, Peressotti A, Cotrufo MF (2003) Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob Change Biol 9:1204–1213. doi:10.1046/j.1365-2486.2003.00657.x

    Article  Google Scholar 

  • Elliott ET (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J 50:627–633

    Google Scholar 

  • Follett RF, Shafer SR, Jawson MD, Franzluebbers AJ (2005) Research and implementation needs to mitigate greenhouse gas emissions from agriculture in the USA. Soil Tillage Res 83:159–166. doi:10.1016/j.still.2005.02.014

    Article  Google Scholar 

  • Guo L, Lin E (2001) Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils: a review of work in China. Chemosphere: Glob Change Sci 3:413–418. doi:10.1016/S1465-9972(01)00019-8

    Article  CAS  Google Scholar 

  • Halvorson AD, Wienhold BJ, Black AL (2002) Tillage, nitrogen, and cropping system effects on soil carbon sequestration. Soil Sci Soc Am J 66:906–912

    CAS  Google Scholar 

  • Huang Y, Sun WJ (2006) Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chin Sci Bull 51:1785–1803. doi:10.1007/s11434-006-2056-6

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Clim Change 80:5–23. doi:10.1007/s10584-006-9178-3

    Article  CAS  Google Scholar 

  • John B, Yamashita T, Ludwig B, Flessa H (2005) Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128:63–79. doi:10.1016/j.geoderma.2004.12.013

    Article  CAS  Google Scholar 

  • Kaur T, Brar BS, Dhillon NS (2008) Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize-wheat cropping system. Nutr Cycl Agroecosyst 81:59–69. doi:10.1007/s10705-007-9152-0

    Article  Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832. doi:10.2134/jeq2007.0099

    Article  CAS  PubMed  Google Scholar 

  • Lai QW, Li CG, Huang QH (1992) Effect of continuous application of inorganic fertilizer on soil structure properties of paddy soil derived from red soil. Acta Pedol Sin 29:168–174 (in Chinese)

    Google Scholar 

  • Lal R (2003) Carbon sequestration in dryland ecosystems. Environ Manage 33:528–544

    Google Scholar 

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi:10.1126/science.1097396

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004b) Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosyst 70:103–116. doi:10.1023/B:FRES.0000048480.24274.0f

    Article  CAS  Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363:815–830. doi:10.1098/rstb.2007.2185

    Article  CAS  Google Scholar 

  • Liu QH, Shi XZ, Weindorf DC, Yu DS, Zhao YC, Sun WX, Wang HJ (2006) Soil organic carbon storage of paddy soils in China using the 1:1,000,000 soil database and their implications for C sequestration. Global Biogeochem Cycles 20:GB3024. doi:10.1029/2006GB002731

    Article  CAS  Google Scholar 

  • Mandal B, Majumder B, Adhya TK, Bandyopadhyay PK, Gangopadhyay A, Sarkar D, Kundu MC, Choudhury SG, Hazra GC, Kundu S, Samantaray RN, Misra AK (2008) Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Glob Change Biol 14:2139–2151. doi:10.1111/j.1365-2486.2008.01627.x

    Article  Google Scholar 

  • Min DH, Islam KR, Vough LR, Weil RR (2003) Dairy manure effects on soil quality properties and carbon sequestration in alfalfa-orchardgrass systems. Commun Soil Sci Plant Anal 34:781–799. doi:10.1081/CSS-120018975

    Article  CAS  Google Scholar 

  • Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72:87–121. doi:10.1007/s10533-004-0360-2

    Article  Google Scholar 

  • Olk DC, Brunetti G, Senesi N (2000) Decrease in humification of organic matter with intensified lowland rice cropping: a wet chemical and spectroscopic investigation. Soil Sci Soc Am J 64:1337–1347

    Article  CAS  Google Scholar 

  • Pan GX, Li LQ, Wu LS, Zhang XH (2003) Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob Change Biol 10:79–92. doi:10.1111/j.1365-2486.2003.00717.x

    Article  Google Scholar 

  • Schjønning P, Elmholt S, Munkholm LJ, Debosz K (2002) Soil quality aspects of humid sandy loams as influenced by organic and conventional long-term management. Agric Ecosyst Environ 88:195–214. doi:10.1016/S0167-8809(01)00161-X

    Article  Google Scholar 

  • Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367–1377

    CAS  Google Scholar 

  • Six J, Paustian K, Elliott ET, Combrink C (2000) Soil structure and soil organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci Soc Am J 64:681–689

    CAS  Google Scholar 

  • Six J, Callewaert P, Lenders S, De Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002a) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987

    CAS  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002b) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176. doi:10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  • Sleutel S, Neve SD, Németh T, Tóth T, Hofman G (2006) Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments. Eur J Agron 25:280–288. doi:10.1016/j.eja.2006.06.005

    Article  Google Scholar 

  • Su YZ, Wang F, Suo DR, Zhang ZH, Du MW (2006) Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China. Nutr Cycl Agroecosyst 75:285–295. doi:10.1007/s10705-006-9034-x

    Article  CAS  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. doi:10.1111/j.1365-2389.1982.tb01755.x

    Article  CAS  Google Scholar 

  • Triberti L, Nastri A, Giordani G, Comellini F, Baldoni G, Toderi G (2008) Can mineral and organic fertilization help sequestrate carbon dioxide in cropland? Eur J Agron 29:13–20. doi:10.1016/j.eja.2008.01.009

    Article  CAS  Google Scholar 

  • Whalen JK, Chang C (2002) Macroaggregate characteristics in cultivated soils after 25 annual manure applications. Soil Sci Soc Am J 66:1637–1647

    CAS  Google Scholar 

  • Whalen JK, Hu Q, Liu A (2003) Manure applications improve aggregate stability in conventional and no-tillage systems. Soil Sci Soc Am J 67:1842–1847

    CAS  Google Scholar 

  • Witt C, Cassman KG, Olk DC, Biker U, Liboon SP, Samson MI, Ottow JCG (2000) Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil 225:263–278. doi:10.1023/A:1026594118145

    Article  CAS  Google Scholar 

  • Xie ZB, Zhu JG, Liu G, Cadisch G, Hasegawa T, Chen CM, Sun HF, Tang HY, Zeng Q (2007) Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob Change Biol 13:1989–2007. doi:10.1111/j.1365-2486.2007.01409.x

    Article  Google Scholar 

  • Yan D, Wang D, Yang L (2007) Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil. Biol Fertil Soils 44:93–101. doi:10.1007/s00374-007-0183-0

    Article  Google Scholar 

  • Yuan YH, Li HX, Huang QR, Hu F, Pan GX (2004) Effects of different fertilization on soil organic carbon distribution and storage in micro-aggregates of red paddy topsoil. Acta Ecol Sin 24:2961–2966 (in Chinese)

    Google Scholar 

  • Zaller JG, Köpke U (2004) Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol Fertil Soils 40:222–229. doi:10.1007/s00374-004-0772-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation of the Chinese Academy of Agricultural Sciences (082060302-19), the Program for New Century Excellent Talents in University (NCET-05-0492), and the National Key Technology R&D Program of China (2006BAD15B02, 2006BAD02A15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Rui, W., Peng, X. et al. Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil. Nutr Cycl Agroecosyst 86, 153–160 (2010). https://doi.org/10.1007/s10705-009-9279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-009-9279-2

Keywords

Navigation