Skip to main content
Log in

Objectivity in Quantum Measurement

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The objectivity is a basic requirement for the measurements in the classical world, namely, different observers must reach a consensus on their measurement results, so that they believe that the object exists “objectively” since whoever measures it obtains the same result. We find that this simple requirement of objectivity indeed imposes an important constraint upon quantum measurements, i.e., if two or more observers could reach a consensus on their quantum measurement results, their measurement basis must be orthogonal vector sets. This naturally explains why quantum measurements are based on orthogonal vector basis, which is proposed as one of the axioms in textbooks of quantum mechanics. The role of the macroscopicality of the observers in an objective measurement is discussed, which supports the belief that macroscopicality is a characteristic of classicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Obviously, the coefficient matrix \(\varrho _{mnl,\,m'n'l'}\) of the density operator \(\rho _{ABC}\) is semi-positive. Notice that \([\varrho _{mnl,\,m'n'l'}]\) can be regarded as a block matrix, and \([\mathbf {C}^{(mn;mn)}]_{l,l'}=\varrho _{mnl,\,mnl'}\) is one of its principal blocks, thus \(\mathbf {C}^{(mn;mn)}\) is semi-positive.

  2. For any non-zero vector \(\mathbf {v}:=(v_{1},v_{2},\ldots ,v_{L})^{T}\), we have \(\mathbf {v}^{\dagger }\cdot \mathbf {P}\cdot \mathbf {v}=\sum _{l,l'}v_{l'}^{*}\langle \mathsf {c}_{l'}| \mathsf {c}_{l}\rangle v_{l}=\langle {\tilde{\psi }}|{\tilde{\psi }}\rangle >0\), where \(|{\tilde{\psi }}\rangle :=\sum _{l}v_{l}| \mathsf {c}_{l}\rangle \)

References

  1. Joos, E. et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, New York (2003). http://www.springer.com/physics/quantum+physics/book/978-3-540-00390-8

  2. Gell-Mann, M., Hartle, J.: Quantum mechanics in the light of quantum cosmology. In: Zurek, W. (ed.) Complexity, Entropy, and the Physics of Information. Addison-Wesley, Reading (1990)

    Google Scholar 

  3. Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47(8), 3345 (1993). https://doi.org/10.1103/PhysRevD.47.3345

    Article  ADS  MathSciNet  Google Scholar 

  4. Weinberg, S.: Lectures on Quantum Mechanics. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  5. Weinberg, S.: Quantum mechanics without state vectors. Phys. Rev. A 90(4), 042102 (2014). https://doi.org/10.1103/PhysRevA.90.042102

    Article  ADS  MathSciNet  Google Scholar 

  6. Tipler, E.J.: Quantum nonlocality does not exist. Proc. Nat. Acad. Sci. USA 111(31), 11281 (2014). https://doi.org/10.1073/pnas.1324238111

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Zeh, H.D.: On the interpretation of measurement in quantum theory. Found. Phys. 1(1), 69 (1970). https://doi.org/10.1007/BF00708656

    Article  ADS  Google Scholar 

  8. Zurek, W.H.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24(6), 1516 (1981). https://doi.org/10.1103/PhysRevD.24.1516

    Article  ADS  MathSciNet  Google Scholar 

  9. Joos, E., Zeh, H.D.: The emergence of classical properties through interaction with the environment. Zeit. Phys. B 59(2), 223 (1985). https://doi.org/10.1007/BF01725541

    Article  ADS  Google Scholar 

  10. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003). https://doi.org/10.1103/RevModPhys.75.715

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys. 36(1–2), 219 (1984). https://doi.org/10.1007/BF01015734

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Griffiths, R.B.: Consistent Quantum Theory. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  13. Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29(3), 454 (1957). https://doi.org/10.1103/RevModPhys.29.454

    Article  ADS  MathSciNet  Google Scholar 

  14. DeWitt, B., Graham, N.: The Many-Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)

    Google Scholar 

  15. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85(2), 166 (1952). https://doi.org/10.1103/PhysRev.85.166

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85(2), 180 (1952). https://doi.org/10.1103/PhysRev.85.180

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. ’t Hooft, G.: Quantummechanical behaviour in a deterministic model. arXiv:quant-ph/9612018 (1996)

  18. ’t Hooft, G.: Quantum gravity as a dissipative deterministic system. Class. Quant. Grav. 16(10), 3263 (1999). https://doi.org/10.1088/0264-9381/16/10/316

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Sun, C., Liu, X., Yu, S.: Algebraic construction of ’t Hooft’s quantum equivalence classes. Mod. Phys. Lett. A 16(02), 75 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. Liu, X.F., Sun, C.P.: Consequences of ’t Hooft’s equivalence class theory and symmetry by coarse graining. J. Math. Phys. 42(8), 3665 (2001). https://doi.org/10.1063/1.1380250

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Adler, S.L.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  22. Adler, S.L.: Generalized quantum dynamics. Nucl. Phys. B 415(1), 195 (1994). https://doi.org/10.1016/0550-3213(94)90072-8

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Zurek, W.H.: Quantum origin of quantum jumps: breaking of unitary symmetry induced by information transfer in the transition from quantum to classical. Phys. Rev. A 76(5), 052110 (2007). https://doi.org/10.1103/PhysRevA.76.052110

    Article  ADS  Google Scholar 

  24. Zurek, W.H.: Quantum Darwinism. Nature Phys 5(3), 181 (2009). https://doi.org/10.1038/nphys1202

    Article  ADS  Google Scholar 

  25. Zurek, W.H.: Wave-packet collapse and the core quantum postulates: discreteness of quantum jumps from unitarity, repeatability, and actionable information. Phys. Rev. A 87(5), 052111 (2013). https://doi.org/10.1103/PhysRevA.87.052111

    Article  ADS  Google Scholar 

  26. Zurek, W.H.: Quantum Darwinism, classical reality, and the randomness of quantum jumps. Phys. Today 67(10), 44 (2014). https://doi.org/10.1063/PT.3.2550

    Article  Google Scholar 

  27. Riedel, C.J., Zurek, W.H., Zwolak, M.: Objective past of a quantum universe: redundant records of consistent histories. Phys. Rev. A 93(3), 032126 (2016). https://doi.org/10.1103/PhysRevA.93.032126

    Article  ADS  Google Scholar 

  28. Von Neumann, J.: Mathematical Foundations of Quantum Mechanics. 2. Princeton University Press, Princeton (1955)

    Google Scholar 

  29. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001). https://doi.org/10.1103/PhysRevLett.88.017901

    Article  ADS  MATH  Google Scholar 

  30. Ollivier, H., Poulin, D., Zurek, W.H.: Objective properties from subjective quantum states: environment as a witness. Phys. Rev. Lett. 93(22), 220401 (2004). https://doi.org/10.1103/PhysRevLett.93.220401

    Article  ADS  Google Scholar 

  31. Sun, C.P.: Quantum dynamical model for wave-function reduction in classical and macroscopic limits. Phys. Rev. A 48(2), 898 (1993). https://doi.org/10.1103/PhysRevA.48.898

    Article  ADS  MathSciNet  Google Scholar 

  32. Quan, H.T., Song, Z., Liu, X.F., Zanardi, P., Sun, C.P.: Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96(14), 140604 (2006). https://doi.org/10.1103/PhysRevLett.96.140604

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Basic Research Program of China (Grant Nos. 2016YFA0301201 & 2014CB921403), NSFC (Grant No. 11534002) and NSAF (Grant Nos. U1730449 & U1530401). We thank S. M. Fei (Capital Normal University) and D. L. Zhou (Institute of Physics, CAS) for helpful discussions. CPS also acknowledges Prof. Jürgen Jost for his kind invitation to visit Max Planck Institute for Mathematics in the Sciences, where the manuscript was finally accomplished.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Wen Li.

A Proof for the Proposition 1

A Proof for the Proposition 1

Proposition 1

For a tripartite density matrix \(\rho _{ABC}\), if its reduced matrices \(\rho _{AB}=\mathrm {tr}_{C}[\rho _{ABC}]\) and \(\rho _{AC}=\mathrm {tr}_{B}[\rho _{ABC}]\) have the forms of

$$\begin{aligned} \rho _{AB}&=\sum _{n}p_{n}|\mathsf {a}_{n},\,\mathsf {b}_{n}\rangle \langle \mathsf {a}_{n},\,\mathsf {b}_{n}|, \end{aligned}$$
(20)
$$\begin{aligned} \rho _{AC}&=\sum _{n}p_{n}|\mathsf {a}_{n},\,\mathsf {c}_{n}\rangle \langle \mathsf {a}_{n},\,\mathsf {c}_{n}|, \end{aligned}$$
(21)

then there exists an orthonormal vector set \(\{|\varPhi _{i}\rangle \}\), such that the tripartite \(\rho _{ABC}\) can be written as

$$\begin{aligned} \rho _{ABC}&=\sum _{i}\lambda _{i}|\varPhi _{i}\rangle \langle \varPhi _{i}|,\qquad \lambda _{i}\ge 0\nonumber \\ |\varPhi _{i}\rangle&=\sum _{n}\mathsf {C}_{n}^{(i)}|\mathsf {a}_{n},\,\mathsf {b}_{n},\,\mathsf {c}_{n}\rangle . \end{aligned}$$
(22)

Here \(\{|\mathsf {a}_{n}\rangle \}\), \(\{|\mathsf {b}_{n}\rangle \}\) and \(\{|\mathsf {c}_{n}\rangle \}\) are complete basis sets for the Hilbert space \({{\mathcal {H}}}_{A}\), \({{\mathcal {H}}}_{B}\) and \(\mathcal{H}_{C}\) respectively, but not necessarily orthogonal ones.

For clarity, we use \(A,\,B,\,C\) here to replace the \(S,\,D,\,D'\) in the main text. To prove this proposition, we need the following lemma:

Lemma

Let \(\mathbf {P}\) be a positive definite matrix and \(\mathbf {C}\) a semi-positive one. If \(\mathrm{tr}[\mathbf {C}\cdot \mathbf {P}]=0\), then \(\mathbf {C}\) is a zero matrix.

Proof

We decompose the positive matrix \(\mathbf {P}\) in its eigen basis as \(\mathbf {P}=\sum _{n}\lambda _{n}|n\rangle \langle n|\), where all \(\lambda _{n}>0\). Then we have \(\mathrm {tr}[\mathbf {C}\cdot \mathbf {P}]=\sum _{n}\lambda _{n}\langle n|\mathbf {C}|n\rangle =0\). To make sure \(\langle n|\mathbf {C}|n\rangle =0\) for all the basis \(\{|n\rangle \}\), \(\mathbf {C}\) must be a zero matrix. \(\square \)

With the help of the above lemma, the proof of Proposition 1 lies as follows.

Proof

For the tripartite density matrix \(\rho _{ABC}\), we can always write it as the eigen spectrum decomposition \(\rho _{ABC}=\sum _{i}\lambda _{i}|\varPhi _{i}\rangle \langle \varPhi _{i}|\), where \(|\varPhi _{i}\rangle \) are orthonormal basis, and \(\lambda _{i}>0\) are the non-zero eigenvalues respectively. But now we could only write down \(|\varPhi _{i}\rangle \) in a general form

$$\begin{aligned} |\varPhi _{i}\rangle =\sum _{m=1}^{M}\sum _{n=1}^{N}\sum _{l=1}^{L}\mathsf {C}_{mnl}^{(i)}|\mathsf {a}_{m},\,\mathsf {b}_{n},\,\mathsf {c}_{l}\rangle , \end{aligned}$$
(23)

where \(\mathsf {C}_{nml}^{(i)}\) are complex numbers. It then follows that

$$\begin{aligned}&\rho _{ABC}=\sum _{\begin{array}{c} mnl \\ m'n'l' \end{array}}\varrho _{mnl,\,m'n'l'}|\mathsf {a}_{m},\mathsf {b}_{n},\mathsf {c}_{l}\rangle \langle \mathsf {a}_{m'},\mathsf {b}_{n'},\mathsf {c}_{l'}|,\nonumber \\&\quad \varrho _{mnl,\,m'n'l'}:=\sum _{i}\lambda _{i}\cdot \mathsf {C}_{mnl}^{(i)}\overline{\mathsf {C}}_{m'n'l'}^{(i)}, \end{aligned}$$
(24)

and the reduced density matrix \(\rho _{AB}\) becomes

$$\begin{aligned} \rho _{AB}=\mathrm{Tr}_{C}[\rho _{ABC}]=\sum _{\begin{array}{c} m,n \\ m',n' \end{array}}\Big (\sum _{l,l'}\varrho _{mnl,\,m'n'l'}\langle \mathsf {c}_{l'}|\mathsf {c}_{l}\rangle \Big )|\mathsf {a}_{m},\mathsf {b}_{n}\rangle \langle \mathsf {a}_{m'},\mathsf {b}_{n'}|. \end{aligned}$$
(25)

Comparing this with the required form of \(\rho _{AB}\) [Eq. (20)], we come to the following equation

$$\begin{aligned} \sum _{l,l'}\varrho _{mnl,\,m'n'l'}\langle \mathsf {c}_{l'}|\mathsf {c}_{l}\rangle =\delta _{mm'}\delta _{nn'}\cdot \delta _{mn}p_{n}. \end{aligned}$$
(26)

Now we introduce two \(L\times L\) matrices \(\mathbf {C}^{(mn;m'n')}\) and \(\mathbf {P}\), which are defined by

$$\begin{aligned}{}[\mathbf {C}^{(mn;m'n')}]_{l,l'}=\varrho _{mnl,\,m'n'l'},\quad \mathbf {P}_{l',l}=\langle \mathsf {c}_{l'}|\mathsf {c}_{l}\rangle . \end{aligned}$$
(27)

With their help, Eq. (26) can be written in a compact form

$$\begin{aligned} \mathrm {tr}[\mathbf {C}^{(mn;m'n')}\cdot \mathbf {P}]=\delta _{mm'}\delta _{nn'}\cdot \delta _{mn}p_{n}. \end{aligned}$$
(28)

One notices that when \(m=m'\), \(n=n'\), \(m\ne n\), we have

$$\begin{aligned} \mathrm {tr}[\mathbf {C}^{(mn;mn)}\cdot \mathbf {P}]=0. \end{aligned}$$
(29)

It is easy to verify that \(\mathbf {C}^{(mn;mn)}\) is a semi-positive matrix,Footnote 1 and \(\mathbf {P}\) is positive definite.Footnote 2 Therefore, according to above lemma, we know that \(\mathbf {C}^{(mn;mn)}\) is a zero matrix when \(m\ne n\). Thus we obtain

$$\begin{aligned}{}[\mathbf {C}^{(mn;mn)}]_{l,l}=\varrho _{mnl,\,mnl}=\sum _{i}\lambda _{i}\cdot |\mathsf {C}_{mnl}^{(i)}|^{2}=0. \end{aligned}$$
(30)

Since all the \(\lambda _{i}>0\) in the above summation, that leads to

$$\begin{aligned} \mathsf {C}_{mnl}^{(i)}=0,\quad \forall \,i,\,l,\,m\ne n. \end{aligned}$$
(31)

In the same way, by comparing with \(\rho _{AC}\) [Eq. (21)], we can prove

$$\begin{aligned} \mathsf {C}_{mnl}^{(i)}=0,\quad \forall \,i,\,n,\,m\ne l. \end{aligned}$$
(32)

Therefore, the only possible non-zero coefficients \(\mathsf {C}_{mnl}^{(i)}\) are those satisfying \(m=n=l\), thus, we write the coefficients as \(\mathsf {C}_{mnl}^{(i)}=\delta _{mn}\delta _{ml}\cdot \mathsf {C}_{n}^{(i)}\), then we obtain the expression

$$\begin{aligned} |\varPhi _{i}\rangle =\sum _{n}\mathsf {C}_{n}^{(i)}|\mathsf {a}_{n},\,\mathsf {b}_{n},\,\mathsf {c}_{n}\rangle \end{aligned}$$
(33)

and complete the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, SW., Cai, C.Y., Liu, X.F. et al. Objectivity in Quantum Measurement. Found Phys 48, 654–667 (2018). https://doi.org/10.1007/s10701-018-0169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0169-9

Keywords

Navigation