Skip to main content
Log in

Experimental Bounds on Classical Random Field Theories

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Alternative theories to quantum mechanics motivate important fundamental tests of our understanding and descriptions of the smallest physical systems. Here, using spontaneous parametric downconversion as a heralded single-photon source, we place experimental limits on a class of alternative theories, consisting of classical field theories which result in power-dependent normalized correlation functions. In addition, we compare our results with standard quantum mechanical interpretations of our spontaneous parametric downconversion source over an order of magnitude in intensity. Our data match the quantum mechanical expectations, and do not show a statistically significant dependence on power, limiting quantum mechanics alternatives which require power-dependent autocorrelation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179 (1952). doi:10.1103/PhysRev.85.166

  2. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85, 180–193 (1952). doi:10.1103/PhysRev.85.180

  3. Stapp, H.P.: The Copenhagen interpretation. Am. J. Phys. 40(8), 1098–1116 (1972). doi:10.1119/1.1986768

    Article  MathSciNet  ADS  Google Scholar 

  4. Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29(4), 631–643 (1999). doi:10.1023/A:1018820410908

    Article  MathSciNet  Google Scholar 

  5. Gell-Mann, M., Hahtle, J., Griffiths, R.B., Zeilinger, A., Nachtrieb, R.T., Anderson, J.L., Dotson, A.C., Hoover, W.G., Bradford, H.M., Goldstein, S.: Observant readers take the measure of novel approaches to quantum theory; some get Bohmed. Phys. Today 52(2), 11 (1999). doi:10.1063/1.882512

    Article  Google Scholar 

  6. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2005). doi:10.1103/RevModPhys.76.1267

  7. Hewitt-Horsman, C.: An introduction to many worlds in quantum computation. Found. Phys. 39(8), 869–902 (2009). doi:10.1007/s10701-009-9300-2

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Clarke, M.L.: Emerging interpretations of quantum mechanics and recent progress in quantum measurement. Eur. J. Phys. 35(1), 015021 (2014). doi:10.1088/0143-0807/35/1/015021

    Article  Google Scholar 

  9. Beneduci, R., Schroeck, F.E.: On the unavoidability of the interpretations of quantum mechanics. Am. J. Phys. 82(1), 80–82 (2014). doi:10.1119/1.4824797

    Article  ADS  Google Scholar 

  10. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935). doi:10.1103/PhysRev.47.777

    Article  MATH  ADS  Google Scholar 

  11. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970). doi:10.1103/RevModPhys.42.358

    Article  MATH  ADS  Google Scholar 

  12. Gao, S.: Meaning of the wave function. Int. J. Quantum Chem. 111(15), 4124–4138 (2011). doi:10.1002/qua.22972

    Article  Google Scholar 

  13. Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8(6), 476–479 (2012). doi:10.1038/nphys2309

    Article  Google Scholar 

  14. Aspect, A., Grangier, P., Roger, G.: Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 49(2), 91–94 (1982). doi:10.1103/PhysRevLett.49.91

    Article  ADS  Google Scholar 

  15. Hong, C.K., Ou, Z.Y., Mandel, L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987). doi:10.1103/PhysRevLett.59.2044

    Article  ADS  Google Scholar 

  16. Gleyzes, S., Kuhr, S., Guerlin, C., Bernu, J., Deleglise, S., Busk Hoff, U., Brune, M., et al.: Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446(7133), 297–300 (2007). doi:10.1038/nature05589

    Article  ADS  Google Scholar 

  17. Salart, D., Baas, A., Branciard, C., Gisin, N., Zbinden, H.: Testing the speed of /‘spooky action at a distance/’. Nature 454(7206), 861–864 (2008)

    Article  ADS  Google Scholar 

  18. Khrennikov, A., Nilsson, B., Nordebo, S.: On an experimental test of prequantum theory of classical random fields: an estimate from above of the coefficient of second-order coherence. Int. J. Quantum Inform. 10(08), 1241014 (2012). doi:10.1142/S0219749912410146

    Article  Google Scholar 

  19. Khrennikov, A.: Towards new Grangier type experiments. Ann. Phys. 327(7), 1786–1802 (2012). doi:10.1016/j.aop.2012.04.011

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Khrennikov, A., Nilsson, B., Nordebo, S.: Quantum rule for detection probability from Brownian motion in the space of classical fields. Theor. Math. Phys. 174(2), 298–306 (2013). doi:10.1007/s11232-013-0027-z

    Article  MATH  MathSciNet  Google Scholar 

  21. Clauser, J.: Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D 9(4), 853–860 (1974). doi:10.1103/PhysRevD.9.853

    Article  ADS  Google Scholar 

  22. Aspect, A., Grangier, p, Roger, G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47(7), 460–463 (1981). doi:10.1103/PhysRevLett.47.460

    Article  ADS  Google Scholar 

  23. Lamb Jr, W.E.: Anti-photon. Appl. Phys. 60(2—-3), 77–84 (1995). doi:10.1007/BF01135846

    Article  Google Scholar 

  24. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  25. Kershaw, D.: Theory of hidden variables. Phys. Rev. 136, B1850–B1856 (1964). doi:10.1103/PhysRev.136.B1850

  26. Nelson, E.: Derivation of the Schrödinger Equation from Newtonian Mechanics. Phys. Rev. 150, 1079–1085 (1966). doi:10.1103/PhysRev.150.1079

  27. Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82(7), 071101 (2011). doi:10.1063/1.3610677

    Article  ADS  Google Scholar 

  28. Ashcroft, N.W., Mermin, N.D.: Solid State Physics, 1st edn. Brooks/Cole CENGAGE Learning, Boston (1976)

    Google Scholar 

  29. Wrobel, J., Levinstein, H.: Photoconductivity in InSb-GaSb and InAs-GaAs alloys. Infrared Phys. 7(4), 201–210 (1967)

    Article  ADS  Google Scholar 

  30. Migdall, A.L., Polyakov, S.V., Fan, J., Bienfang, J.C.: Single-Photon Generation and Detection, Experimental Methods in the Physical Sciences. Academic Press, New York (2013)

    Google Scholar 

  31. Pereira, M.D.C., Becerra, F.E., Glebov, B.L., Fan, J., Nam, S.W., Migdall, A.: Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion. Opt. Lett. 38(10), 1609–1611 (2013)

    Article  ADS  Google Scholar 

  32. Polyakov, S., Peters, J., Migdall, A.L., Nam, S.W.: Fpga-based multicoincidence recipe and software. Web (2014). http://physics.nist.gov/fpga

  33. Polyakov, S.V., Migdall, A.L.: High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency. Opt. Express 15(4), 1407 (2007). doi:10.1364/OE.15.001390

    Article  Google Scholar 

  34. Goldschmidt, E.A.: Non-classical light for quantum information. Ph.D. thesis, University of Maryland, College Park (2014).

  35. Goldschmidt, E.A., Piacentini, F., Berchera, I.R., Polyakov, S.V., Peters, S., et al.: Mode reconstruction of a light field by multiphoton statistics. Phys. Rev. A 88, 013822 (2013). doi:10.1103/PhysRevA.88.013822

    Article  ADS  Google Scholar 

  36. Brida, G., Degiovanni, I.P., Genovese, M., Piacentini, F., Traina, P., Della Frera, A., Tosi, A., Bahgat Shehata, A., Scarcella, C., Gulinatti, A., Ghioni, M., Polyakov, S.V., Migdall, A., Giudice, A.: An extremely low-noise heralded single-photon source: a breakthrough for quantum technologies. Appl. Phys. Lett. 101(22), 221112 (2012). doi:10.1063/1.4768288

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Andrei Khrennikov for fruitful and informative conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joffrey K. Peters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, J.K., Fan, J., Migdall, A.L. et al. Experimental Bounds on Classical Random Field Theories. Found Phys 45, 726–734 (2015). https://doi.org/10.1007/s10701-014-9857-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9857-2

Keywords

Navigation