Skip to main content
Log in

Two decision models for berth allocation problem under uncertainty considering service level

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

This paper examines the berth allocation problem, which is to assign a quay space and a service time to the vessels that have to be loaded and unloaded at a container terminal within a given planning horizon, with consideration of uncertain factors, mainly including the arrival and operation time of the calling vessels. Based on the concept of conflict, two kinds of service level are proposed and two decision models are constructed to minimize the total operational cost, which includes delay cost and non-optimal berthing location cost. The first model satisfies the service level of a specific scenario and the second one considers the service level across all scenarios. Due to the NP-hardness of the constructed model, a two-stage heuristics algorithm is employed to solve the problem. Finally, extensive numerical experiments are conducted to test the performances of the two proposed models and algorithm and help the port planners make decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Europ J Oper Res 202(3):615–627

    Article  MathSciNet  MATH  Google Scholar 

  • Bierwirth C, Meisel F (2015) A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. Europ J Oper Res 244(3):675–689

    Article  MathSciNet  MATH  Google Scholar 

  • Chang D, Yan W, Chen C-H, Jiang Z (2008) A berth allocation strategy using heuristics algorithm and simulation optimisation. Int J Comput Appl Technol 32(4):272–281

    Article  Google Scholar 

  • Chen CY, Hsieh TW (1999) A time-space network model for the berth allocation problem. In: 19th IFIP TC7 Conference on system modeling and optimization, Cambridge

  • Dai J, Lin W, Moorthy R, Teo CP (2008) Berth allocation planning optimization in container terminals. In: Tang CS, Teo CP, Wei KK (eds) Supply chain analysis: a handbook on the interaction of information, system and optimization. Springer, New York, pp 69–105

    Chapter  Google Scholar 

  • Du Y, Xu Y, Chen Q (2010) A feedback procedure for robust berth allocation with stochastic vessel delays. Intell Control and Automation IEEE 20:2210–2215

    Google Scholar 

  • Gao C, Zhang R, Du Y, Chen Q (2010) A proactive and reactive framework for berth allocation with uncertainties. In: 2010 IEEE international conference on advanced management science (ICAMS), Vol. 3; pp. 144–149

  • Giallombardo G, Moccia L, Salani M, Vacca I (2010) Modeling and solving the tactical berth allocation problem. Trans Res Part B Methodological 44(2):232–245

    Article  Google Scholar 

  • Guan Y, Xiao W-Q, Cheung RK, Li C-L (2002) A multiprocessor task scheduling model for berth allocation: heuristic and worst-case analysis. Oper Res Lett 30(5):343–350

    Article  MathSciNet  MATH  Google Scholar 

  • Guan Y, Cheung RK (2004) The berth allocation problem: models and solution methods. OR Spectr 26:75–92

    Article  MathSciNet  MATH  Google Scholar 

  • Golias MM (2011) A bi-objective berth allocation formulation to account for vessel handling time uncertainty. Maritime Econ Logist 13(4):419–441

    Article  Google Scholar 

  • Golias M, Portal I, Konur D, Kaisar E, Kolomvos G (2014) Robust berth scheduling at marine container terminals via hierarchical optimization. Comput Oper Res 41:412–422

    Article  MathSciNet  MATH  Google Scholar 

  • Han X, Lu Z, Xi (2010) A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. Europ J Oper Res 207:1327–1340

  • Hansen P, Oguz C, Mladenovic N (2008) Variable neighborhood search for minimum cost berth allocation. Europ J Oper Res 191:636–649

    Article  MATH  Google Scholar 

  • Hansen P, Oguz C (2003) A note on formulations of static and dynamic berth allocation problems. Les Cahiers du GERAD 30:1–17

    Google Scholar 

  • Hendriks M, Laumanns M, Lefeber E, Udding JT (2010) Robust cyclic berth planning of container vessels. OR Spectr 32(3):501–517

    Article  MATH  Google Scholar 

  • Imai A, Nagaiwa K, Chan W (1997) Efficient planning of berthing allocation for container terminals in Asia. J Adv Trans 31:75–94

    Article  Google Scholar 

  • Imai A, Nishimura E, Papadimitriou S (2001) The dynamic berth allocation problem for a container port. Trans Res Part B Methodological 35:401–417

    Article  Google Scholar 

  • Imai A, Nishimura E, Papadimitriou S (2003) Berth allocation with service priority. Trans Res Part B Methodological 37(5):437–457

    Article  Google Scholar 

  • Imai A, Sun X, Nishimura E, Papadimitriou S (2005) Berth allocation in a container port: Using a continuous location space approach. Trans Res Part B Methodological 39:199–221

    Article  Google Scholar 

  • Imai A, Nishimura E, Hattori M, Papadimitriou S (2007) Berth allocation at indented berths for mega-containerships. Europ J Oper Res 179(2):579–593

    Article  MATH  Google Scholar 

  • Imai A, Chen HC, Nishimura E, Papadimitriou S (2008) The simultaneous berth and quay crane allocation problem. Trans Res Part E Logist Trans Rev 44(5):900–920

    Article  Google Scholar 

  • James RJ, Almada-Lobo B (2011) Single and parallel machine capacitated lotsizing and scheduling: new iterative MIP-based neighborhood search heuristics. Comput Oper Res 38(12):1816–1825

    Article  MATH  Google Scholar 

  • Karafa J, Golias MM, Ivey S, Saharidis GK, Leonardos N (2013). The berth allocation problem with stochastic vessel handling times. The Int J Adv Manuf Technol, 1–12

  • Kim K, Moon K (2003) Berth scheduling by simulated annealing. Trans Res Part B Methodological 37:541–560

    Article  Google Scholar 

  • Li CL, Cai X, Lee CY (1998) Scheduling with multiple-job-on-one-processor pattern. IIE Trans 30(5):433–445

    Google Scholar 

  • Liu C, Xiang X, Zhang C, Zheng L (2016a) A decision model for berth allocation under uncertainty considering service level using an adaptive differential evolution algorithm. Asia-Pacif J Oper Res 33(6):1–28

    MathSciNet  MATH  Google Scholar 

  • Liu C, Zheng L, Zhang C (2016) Behavior perception-based disruption models for berth allocation and quay crane assignment problems. Comput Ind Eng 97:258–275

    Article  Google Scholar 

  • Liu C, Zhang C, Zheng L (2017) A bi-objective model for robust yard allocation scheduling for outbound containers. Eng Optim 49(1):113–135

    Article  MathSciNet  Google Scholar 

  • Meisel F, Bierwirth C (1998) Heuristics for the integration of crane productivity in the berth allocation problem. Trans Res Part E Logist Trans Rev 45(1):196–209

    Article  Google Scholar 

  • Meisel F, Bierwirth C (2013) A framework for integrated berth allocation and crane operations planning in seaport container terminals. Trans Sci 47(2):131–147

    Article  Google Scholar 

  • Monaco MF, Sammarra M (2007) The berth allocation problem: a strong formulation solved by a Lagrangean approach. Trans Sci 41(2):265–280

    Article  Google Scholar 

  • Moon K (2000) A mathematical model and a heuristic algorithm for berth planning. Ph.D. Thesis, Pusan National University, Pusan 2000

  • Moorthy R, Teo CP (2006) Berth management in container terminal: the template design problem. OR spectrum 28:495–518

    Article  MATH  Google Scholar 

  • Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43(2):264–281

    Article  MathSciNet  MATH  Google Scholar 

  • Murty KG, Liu J, Wan YW, Linn R (2005) A decision support system for operations in container terminal. Decis Support Syst 39:309–332

    Article  Google Scholar 

  • Nishimura E, Imai A, Papadimitriou S (2001) Berth allocation planning in the public berth system by genetic algorithms. Europ J Oper Res 131:282–292

    Article  MATH  Google Scholar 

  • Park K, Kim K (2002) Berth scheduling for container terminals by using a sub-gradient optimization technique. J Oper Res Soc 53:1054–1062

    Article  MATH  Google Scholar 

  • Steenken D, VoB S, Stahlbock R (2004) Container terminal operation and operations researchłłA classification and literature review. OR spectrum 26(1):3–49

    Article  MATH  Google Scholar 

  • Stahlbock R, VoB S (2008) Operations research at container terminals: a literature update. OR spectrum 30(1):1–52

    Article  MathSciNet  MATH  Google Scholar 

  • Schepler X, Balev S, Michel S, Sanlaville E (2017) Global planning in a multi-terminal and multi-modal maritime container port. Trans Res Part E: Logist Trans Rev 100:38–62

    Article  Google Scholar 

  • Ursavas E, Zhu SX (2016) Optimal policies for the berth allocation problem under stochastic nature. Europ J Oper Res 255(2):380–387

    Article  MathSciNet  MATH  Google Scholar 

  • Umang N, Bierlaire M, Vacca I (2013) Exact and heuristic methods to solve the berth allocation problem in bulk ports. Trans Res Part E: Logist Trans Rev 54:14–31

    Article  Google Scholar 

  • Vis IFA, Koster R (2003) Transshipment of containers at a container terminal: an overview. Europ J Oper Res 147(1):1–16

    Article  MATH  Google Scholar 

  • Wang F, Lim A (2007) A stochastic beam search for the berth allocation problem. Decis Support Syst 42:2186–2196

    Article  Google Scholar 

  • Xu Y, Chen Q, Quan X (2012) Robust berth scheduling with uncertain vessel delay and handling time. Ann Oper Res 192(1):123–140

    Article  MathSciNet  MATH  Google Scholar 

  • Yu CS, Li HL (2000) A robust optimization model for stochastic logistic problems. Int J Prod Econ 64(1):385–397

    Article  Google Scholar 

  • Zhang C, Zheng L, Zhang Zh, Shi L, Armstrong AJ (2010) The allocation of berths and quay cranes by using a sub-gradient optimization technique. Comput Ind Eng 58(1):40–50

    Article  Google Scholar 

  • Zhen L, Chang D (2012) A bi-objective model for robust berth allocation scheduling. Comput Ind Eng 63:262–273

    Article  Google Scholar 

  • Zhen L, Chew EP, Lee LH (2011a) An integrated model for berth template and yard template planning in transshipment hubs. Trans Sci 45:483–504

    Article  Google Scholar 

  • Zhen L, Lee LH, Chew EP (2011b) A decision model for berth allocation under uncertainty. Europ J Oper Res 212:54–68

    Article  Google Scholar 

  • Zhen L (2014) Container yard template planning under uncertain maritime market. Trans Res Part E Logist Trans Rev 69:199–217

    Article  Google Scholar 

  • Zhen L (2015) Tactical berth allocation under uncertainty. Europ J Oper Res 247:928–944

    Article  MathSciNet  MATH  Google Scholar 

  • Zhen L, Wang S, Wang K (2016) Terminal allocation problem in a transshipment hub considering bunker consumption. Naval Research Logistics, Hoboken

    Google Scholar 

  • Zhou P, Kang H, Lin L (2006) A dynamic berth allocation model based on stochastic consideration. In: The sixth world congress on intelligent control and automation, WCICA 2006. Vol.2, pp. 7297–7301. IEEE Xplore

  • Zhou PF, Kang HG (2008) Study on berth and quay-crane allocation under stochastic environments in container terminal. Syst Eng Theory & Practice 28(1):161–169

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under grant number 51705282, the National Natural Science Foundation of China under grant number 71472108, the Shenzhen Municipal Science and Technology Innovation Committee under grant number JCYJ20160531195231085, the Ministry of Science and Technology of the People’s Republic of China (No. 2014IM010100). The authors would like to acknowledge Dr. Jing Ma’s help during the revision process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changchun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Xiang, X. & Zheng, L. Two decision models for berth allocation problem under uncertainty considering service level. Flex Serv Manuf J 29, 312–344 (2017). https://doi.org/10.1007/s10696-017-9295-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-017-9295-5

Keywords

Navigation