Skip to main content
Log in

A preliminary design of the magnetic diverter on-board the eXTP observatory

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Charged particles in the space environment can degrade the scientific performances of X-ray detectors in astronomical telescopes. An efficient countermeasure is to place a magnetic diverter at the exit pupil of optics to deflect charged particles away from the sensitive detection area. In this work, we have performed a preliminary design of the magnetic diverter on-board the enhanced X-ray Timing and Polarimetry (eXTP) observatory. It relies on a Monte Carlo method via the GEANT4 toolkit to simulate the mirror responses to charged particles, using the single scattering physics for electrons and the elastic Remizovich physics for protons. It also implements a numerical method to calculate magnetic fields generated by an assembly of permanent magnets and its impact on the trajectories of charged particles. The compact calculation scheme provides efficient access to the background level estimation given the certain radiation environment, which enables the verification of the diverter configuration with the scientific requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aslanyan, V., Keresztes, K., Feldman, C., et al.: Design and implementation of electron diverters for lobster eye space-based X-ray optics. Rev. Scientif. Inst. 90(12), 124502 (2019)

    Article  ADS  Google Scholar 

  2. Kendziorra, E., Clauss, T., Meidinger, N., et al.: Effect of low-energy protons on the performance of the EPIC pn-CCD detector on XMM-newton. X-Ray Gamma-Ray Instrument Astronomy XI 4140, 32–41 (2000)

    ADS  Google Scholar 

  3. Lo, D.H., Srour, J.R.: Modeling of proton-induced CCD degradation in the Chandra X-ray observatory. IEEE Trans. Nucl. Sci. 50(6), 2018–2023 (2003)

    Article  ADS  Google Scholar 

  4. Gehrels, N., Chincarini, G., Giommi, P., et al.: The Swift gamma-ray burst mission. Astrophys. J. 611(2), 1005 (2004)

    Article  ADS  Google Scholar 

  5. Jansen, F., Lumb, D., Altieri, B., et al.: XMM-Newton observatory-I. The spacecraft and operations. Astron Astrophys 365(1), L1–L6 (2001)

    Article  ADS  Google Scholar 

  6. Cordier, B., Wei, J., Atteia, J.L., et al.: The SVOM gamma-ray burst mission. arXiv:1512.03323 (2015)

  7. Raab, W., Branduardi-Raymont, G., Wang, C., et al.: SMILE: A joint ESA/CAS mission to investigate the interaction between the solar wind and Earth’s magnetosphere. Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray 9905, 990502 (2016)

    Google Scholar 

  8. Yuan, W., Zhang, C., Feng, H., et al.: Einstein Probe: Exploring the ever-changing X-ray universe. Scientia Sinica Physica, Mechanica Astronomica 48(3), 039502 (2018)

    Article  ADS  Google Scholar 

  9. Ayre, M., Bavdaz, M., Ferreira, I., et al.: ATHENA: System design and implementation for a next generation x-ray telescope. UV, X-Ray and Gamma-Ray Space Instrumentation for Astronomy XIX 96010L, 9601 (2015)

    Google Scholar 

  10. Willingale, R.: An electron diverter for the Swift Telescope. XRA study note XRT-LUX-RE-011/1 University of Leicester (2000)

  11. Spiga, D., Fioretti, V., Bulgarelli, A., et al.: A magnetic diverter for charged particle background rejection in the SIMBOL-x telescope. Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray 7011, 70112Y (2008)

    Google Scholar 

  12. Wang, L., Qin, L., Cheng, J., et al.: Design of the permanent magnet diverter for deflecting electrons on Wide-Field X-Ray telescope. IEEE Trans. Appl. Supercond. 30(4), 1–5 (2020)

    Google Scholar 

  13. Fioretti, V., Bulgarelli, A., Molendi, S., et al.: Magnetic shielding of soft protons in future X-ray telescopes: the case of the ATHENA Wide Field Imager. Astrophys. J. 867(1), 9 (2018)

    Article  ADS  Google Scholar 

  14. Lotti, S., Mineo, T., Jacquey, C., et al.: Soft proton flux on ATHENA focal plane and its impact on the magnetic diverter design. Exp. Astron. 45 (3), 411–428 (2018)

    Article  ADS  Google Scholar 

  15. Zhang, S., Santangelo, A., Feroci, M., et al.: The enhanced X-ray Timing and Polarimetry mission–eXTP. Sci. China Phys. Mech. Astronomy 62 (2), 29502 (2019)

    Article  ADS  Google Scholar 

  16. Grigoryan, O.R., Panasyuk, M.I., Petrov, V.L., Sheveleva, V.N., Petrov, A.N.: Spectral characteristics of electron fluxes at L < 2 under the Radiation Belts. Adv. Space Res. 42(9), 1523–1526 (2008)

    Article  ADS  Google Scholar 

  17. Petrov, A.N., Grigoryan, O.R., Panasyuk, M.I.: Energy spectrum of proton flux near geomagnetic equator at low altitudes. Adv. Space Res. 41(8), 1269–1273 (2008)

    Article  ADS  Google Scholar 

  18. Agostinelli, S., Allison, J., Amako, K.A., et al.: GEANT4-A simulation toolkit. Nuclear instruments and methods in physics research section a: Accelerators, Spectrometers. Detectors and Associated Equipment 506(3), 250–303 (2003)

    Article  Google Scholar 

  19. Ozaki, M., Odaka, H., Sato, T., et al.: A Monte Carlo simulation framework to study ASTRO-h in-orbit radiation and detector responses based on Geant4 toolkit. Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray 8443, 844356 (2012)

    Google Scholar 

  20. Zhao, D., Zhang, C., Yuan, W., et al.: Geant4 simulations of a wide-angle x-ray focusing telescope. Exp. Astron. 43(3), 267–283 (2017)

    Article  ADS  Google Scholar 

  21. Campana, R., Feroci, M., Del Monte, E., et al.: Background simulations for the Large Area Detector onboard LOFT. Exp. Astron. 36(3), 451–477 (2013)

    Article  ADS  Google Scholar 

  22. Ginet, G.P., O’Brien, T.P., Huston, S.L., et al.: AE9, AP9 And SPM: New models for specifying the trapped energetic particle and space plasma environment. Space Sci. Rev. 179(1-4), 579–615 (2013)

    Article  ADS  Google Scholar 

  23. Qi, L.Q., Li, G., Xu, Y.P., et al.: Geant4 simulation for the responses to X-rays and charged particles through the eXTP focusing mirrors. Nuclear Instruments and Methods in Physics Research Section a: Accelerators, Spectrometers Detectors and Associated Equipment 963, 163702 (2020)

    Article  Google Scholar 

  24. Basso, S., Civitani, M., Pareschi, G., et al.: Mirror module design of x-ray telescopes of eXTP mission. Optics for EUV X-Ray, and Gamma-Ray Astronomy IX 11119, 1111904 (2019)

    Google Scholar 

  25. Lei, F., Nartallo, R., Nieminen, P., et al.: Update on the use of Geant4 for the Simulation of low-energy protons scattering off X-ray Mirrors at grazing incidence angles. IEEE Trans. Nuclear Sci. 51(6), 3408–3412 (2004)

    Article  ADS  Google Scholar 

  26. Guzmán, A., Perinati, E., Diebold, S., et al.: A revision of soft proton scattering at grazing incidence and its implementation in the geant 4 toolkit. Exp. Astron. 44(3), 401–411 (2017)

    Article  ADS  Google Scholar 

  27. Fioretti, V., Mineo, T., Bulgarelli, A., et al.: Geant4 simulations of soft proton scattering in X-ray optics. Exp. Astron. 44(3), 413–435 (2017)

    Article  ADS  Google Scholar 

  28. Diebold, S., Tenzer, C., Perinati, E., et al.: Soft proton scattering efficiency measurements on x-ray mirror shells. Exp. Astron. 39(2), 343–365 (2015)

    Article  ADS  Google Scholar 

  29. Zhao, X.Y., Wang, H.Y., Wu, F., et al.: A geometric factor calculation method based on the isotropic flux assumption. Chinese Phys. C 37(12), 126201 (2013)

    Article  ADS  Google Scholar 

  30. Remizovich, V.S., Ryazanov, M.I., Tilinin, I.S.: Energy and angular distributions of particles reflected in glancing incidence of a beam of ions on the surface of a material. Sov. J. Exp. Th. Phys. 52, 225 (1980)

    ADS  Google Scholar 

  31. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, New Jersey (1991)

    MATH  Google Scholar 

  32. Yang, Z.J., Johansen, T.H., Bratsberg, H., Helgesen, G., Skjeltorp, A.T.: Potential and force between a magnet and a bulk y1ba2cu3o7-δ superconductor studied by a mechanical pendulum. Supercond. Sci. Technol. 3(12), 591 (1990)

    Article  ADS  Google Scholar 

  33. Jiang, W.L., Qi, L.Q., Han, D.W., et al.: Method and application of fast estimating particle background level for space-based focusing X-ray instruments. Acta Phys. Sin. 69, 150701 (2020)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the support from the Strategic Priority Program on Space Science, China, the Chinese Academy of Sciences, Grant No. XDA15020501. We also acknowledge Project 12003037 supported by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Qi.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Li, G., Xu, Y. et al. A preliminary design of the magnetic diverter on-board the eXTP observatory. Exp Astron 51, 475–492 (2021). https://doi.org/10.1007/s10686-021-09707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-021-09707-x

Keywords

Navigation