Skip to main content
Log in

Soft proton flux on ATHENA focal plane and its impact on the magnetic diverter design

  • ORIGINAL ARTICLE
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The experience gained with the current generation of X-ray telescopes like Chandra and XMM-Newton has shown that low energy “soft” protons can pose a severe threat to the possibility to exploit scientific data, reducing the available exposure times by up to 50% and introducing a poorly reproducible background component. These soft protons are present in orbits outside the radiation belts and enter the mirrors, being concentrated towards the focal plane instruments, losing energy along their path and finally depositing their remaining energy in the detectors. Their contribution to the residual background will be even higher for ATHENA with respect to previous missions, given the much higher collecting area of the mirrors, even if the instruments will likely suffer no significant radiation damage from this particles flux. As a consequence this soft proton flux shall be damped with the use of a magnetic diverter to avoid excess background loading on the WFI or X-IFU instruments. We present here a first complete evaluation of this background component for the two focal plane instruments of the ATHENA mission in absence of a magnetic diverter, and derive the requirements for such device to reduce the soft protons induced background below the level required to enable the mission science. We estimate the soft proton flux expected in L2 for the interplanetary component and for the component generated locally by acceleration processes in the magnetotail. We produce a proton response matrix for each of the two instruments of ATHENA focal plane, exploiting two independent Monte Carlo simulations to estimate the optics concentration efficiency, and Geant4 simulations to evaluate the energy loss inside the radiation filters and deposited in the detector. With this modular approach we derive the expected fluxes and spectra for the soft protons component of the background. Finally, we calculate the specifics of a magnetic diverter able to reduce such flux below the required level for both X-IFU and WFI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. ATHENA Radiation Environment Models and X-Ray Background Effects Simulators

  2. http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/calgen92002/calgen92002.html

References

  1. Agostinelli, S., Allison, J., Amako, K.: Geant4—a simulation toolkit. NIMA 506(3), 250–303 (2003)

    Article  ADS  Google Scholar 

  2. Allison, J., Amako, K., Apostolakis, J.: Recent developments in Geant4. NIMA 835, 186–225 (2016)

    Article  ADS  Google Scholar 

  3. Allison, J., Amako, K., Apostolakis, J.: Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)

    Article  ADS  Google Scholar 

  4. Barbera, M., Collura, A., Gatti, F.: Baseline design of the thermal blocking filters for the X-IFU detector on board ATHENA. Proc. SPIE 9144(91445U), 11 (2014)

    Google Scholar 

  5. Barbera, M., Argan, A., Bozzo, E., et al.: Thermal filters for the ATHENA X-IFU: Ongoing activities toward the conceptual design. JLTP 184, 706–711 (2016). https://doi.org/10.1007/s10909-016-1501-4. ISSN: 0022-2291

    Article  ADS  Google Scholar 

  6. Bozzo, E., Barbera, M., Genolet, L., et al.: The filter wheel and filters development for the X-IFU instruments onboard Athena. In: Proceedings of SPIE, 9905, art. no. 990561. https://doi.org/10.1117/12.2232328 (2016)

  7. Barbera, M., Branduardi-Raymont, G., Collura, A., et al.: The optical blocking filter for the ATHENA wide field imager: Ongoing activities towards the conceptual design. Proc. SPIE, 9601. https://doi.org/10.1117/12.2189326 (2015)

  8. Christon, S.P., Gloeckler, G., Williams, et al.: Energetic atomic and molecular ions of ionospheric origin observed in distant magnetotail flow-reversal events. Geophys. Res. Lett. 21(25), 3023–3026 (1994). (ISSN 0094-8276)

    Article  ADS  Google Scholar 

  9. Conti, G., Mattaini, E., Santambrogio, E.: X-ray characteristics of the Italian X-ray astronomy satellite (SAX) flight mirror units. Proc. SPIE 2279, 101–109 (1994). https://doi.org/10.1117/12.193179

    Article  ADS  Google Scholar 

  10. Cusumano, G., Campana, S., Romano, P.: In-flight calibration of the swift XRT effective area, in gamma-ray bursts in the swift era. Nousek Am. Instit. Phys. Conf. Series 836, 664–667 (2006). https://doi.org/10.1063/1.2207972

    ADS  Google Scholar 

  11. De Luca, A., Molendi, S: The 2-8 keV cosmic X-ray background spectrum as observed with XMM-Newton. A&A 419, 837–848 (2004)

    Article  ADS  Google Scholar 

  12. Dorman, B., Arnaud, K.A.: Redesign and Reimplementation of XSPEC. Payne Astron. Soc. Pacific Conf. Series 238, 415 (2001)

    ADS  Google Scholar 

  13. Eastman, T.E., Christon, S.P., Doke, T., et al.: Magnetospheric plasma regimes identified using Geotail measurements 1. Regime identification and distant tail variability. J. Geophys. Res. 103(A10), 23503–23520 (1998). https://doi.org/10.1029/98JA01915. (JGR Homepage)

    Article  ADS  Google Scholar 

  14. Fioretti, V., Mineo, T., Bulgarelli, A.: Geant4 simulations of soft proton scattering in X-ray optics - A tentative validation using laboratory measurements. Experimental Astronomy. https://doi.org/10.1007/s10686-017-9559-9 (2017)

  15. Fioretti, V., et al.: The Geant4 mass model of the ATHENA silicon pore optics and its effect on soft proton funneling. Proc. SPIE, in prep (2018)

  16. Guzmán, A., Perinati, E., Diebold, S., Tenzer, C., Santangelo, A.: A revision of soft proton scattering at grazing incidence and its implementation in the GEANT4 toolkit. Exper. Astron. 44(3), 401–411 (2017). https://doi.org/10.1007/s10686-017-9537-2

    Article  ADS  Google Scholar 

  17. Jacquey, C., Williams, D.J., McEntire, R.W., et al.: Tailward energetic ion streams observed at approximately 100 R(sub E) by GEOTAIL-EPIC associated with geomagnetic activity intensification. Geophys. Res. Lett. 21(25), 3015–3018 (1994). (ISSN 0094-8276)

    Article  ADS  Google Scholar 

  18. Kaiser, M.L., Kucera, T.A., Davila, J.M., Cyr, O. C. S. t., Guhathakurta, M., Christian, E.: The STEREO mission: An introduction. Space Sci. Rev. 136 (1–4), 5–16 (2008)

    Article  ADS  Google Scholar 

  19. Kuntz, K.D., Snowden, S.: The X-ray-emitting components toward l = 111: The local hot bubble and beyond. ApJ 674, 209–219 (2008)

    Article  ADS  Google Scholar 

  20. Kuntz, K.D.: Presentation at IACHEC meeting (2014)

  21. Leccardi, A., Molendi, S.: Radial temperature profiles for a large sample of galaxy clusters observed with XMM-Newton. A&A 486, 359–373 (2008)

    Article  ADS  Google Scholar 

  22. Mineo, T., Lotti, S., Molendi, S., Ghizzardi, S.: An XMM-Newton proton response matrix. Experimental Astronomy, in press (2017)

  23. Molendi, S.: Presentation at XMM Radiation Environement Workshop (2000)

  24. Nartallo, R., et al.: Radiation environment induced degradation on Chandra and implications for XMM, ESA Report Esa/estec/tos-em/00-015/RN

  25. Opitz, A., Sauvaud, J.-A., Klassen, A., Gomez-Herrero, R., Bucik, R., Kistler, L.M., Jacquey, C., Luhmann, J., Mason, G., Kajdic, P., Lavraud, B.: Solar wind control of the terrestrial magnetotail as seen by STEREO. J. Geophys. Res. Space Phys. 119, 63426355 (2014). https://doi.org/10.1002/2014JA019988

    Article  Google Scholar 

  26. Remizovich, V.S., Ryazanov, M.I., Tilinin, I.S.: Energy and angular distributions of particles reflected in glancing incidence of a beam of ions on the surface of a material. Soviet J. Exper. Theor. Phys. 52, 225 (1980)

    ADS  Google Scholar 

  27. Rouquette, S., Jacquey, C., Le Contel, O., et al.: Fast tailward stream observed in the distant tail associated with substorm: A multi-instrument study. Geophys. Res. Lett. 27(21), 3571–3574 (2000)

    Article  ADS  Google Scholar 

  28. Tiengo, A.: Constraining long-term and spatial variability of the pn low energy response with RXJ1856

  29. Williams, D.J.: GEOTAIL energetic particle and ion composition instrument. J. Geomag. Geoelectr. 46, 39 (1994)

    Article  ADS  Google Scholar 

  30. Willingale, R.: An electron diverter for the Swift telescope, XRA study note XRT-LUX-RE-011/1. University of Leicester (2000)

Download references

Acknowledgements

GEOTAIL/EPIC data have been provided by the Applied Physics Laboratory at John Hopkins University, Laurel, MD, USA. The GEOTAIL data analysis was partly performed with the AMDA science analysis system provided by the Centre de Données de la Physique des Plasmas (CDPP http://cdpp.eu/) supported by CNRS, CNES, Observatoire de Paris and Université Paul Sabatier, Toulouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Lotti.

Additional information

This work is supported by the ESA “AREMBES” Contract No 4000116655/16/NL/BW.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotti, S., Mineo, T., Jacquey, C. et al. Soft proton flux on ATHENA focal plane and its impact on the magnetic diverter design. Exp Astron 45, 411–428 (2018). https://doi.org/10.1007/s10686-018-9599-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-018-9599-9

Keywords

Navigation