Skip to main content

Advertisement

Log in

Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Riverbank erosion incidence and consecutive flood disasters have increased because of extreme climatic dynamics in the current couple of decades. Farming community livelihood particularly inhabited in flood-prone area has become more vulnerable due to these consecutive riverbank erosion and disasters. The objective of this study is to investigate the effects of climate change on livelihood vulnerability in riverbank erosion Bait community flood-prone area of Punjab, Pakistan. Livelihood vulnerability index approach is comprised of LVI-IPCC with major and subpotential components which were applied for empirical estimation of 240 Bait area respondents of the study area. Livelihood vulnerability index estimated value 0.47 indicated lower socioeconomic conditions caused widen gap among community networking in the study area. Climate vulnerability index estimated value -0.0176 illustrated as study district is higher vulnerable due to calculated values of sensitivity 0.44, exposure 0.50 while with lower adaptive capacity 0.46. Inhabited population in the study area is mostly vulnerable of climate change due to high value of ecological degradation 0.49 in outward appearance of deforestation and riverbank erosion. Bait communities of flood-prone area have limited and traditional adaptive capacities owing to future disasters, inadequate awareness, low level of education and higher poverty as such scenario exposes not capable of adapting environmental changes. These significant estimates of the study are earth-shattering to policy makers to scrutinize the root grounds of livelihood vulnerability and develop the agricultural adaptation for flood-prone rural population. In local scenario there is need to application of such feasible measures as enhancing off-farm income sources, construction of concrete banks and water reservoirs on rivers, developing overhead infrastructure and provision of awareness and training to upcoming hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbas, G., Ahmad, S., Ahmad, A., Nasim, W., Fatima, Z., Hussain, S., …Hoogenboom, G. (2017). Quantification the impacts of climate change and crop management on phenology of maize-based cropping system in Punjab, Pakistan. Agricultural and Forest Meteorology, 247, 42–55.

    Google Scholar 

  • Abbas, S., & Dastgeer, G. (2021). Analysing the impacts of climate variability on the yield of Kharif rice over Punjab, Pakistan. In Natural Resources Forum (Vol. 45, No. 4, pp. 329–349). Blackwell Publishing Ltd.

  • Abbas, S., & Kousar, S. (2021). Spatial analysis of drought severity and magnitude using the standardized precipitation index and streamflow drought index over the Upper Indus Basin, Pakistan. Environment, Development and Sustainability, 23(10), 15314–15340.

    Google Scholar 

  • Abbas, S., Hussain, M. S., & Lee, S. (2020a). Effects of climate on rice yield in the Punjab Province, Pakistan. 대한지리학회지, 55(3), 379–390.

    Google Scholar 

  • Abbas, S., Hussain, M. S., Shirazi, S. A., & Khurshid, M. (2020b). Assessment of Physiographic features and changing climate of Kabul river catchment area in Northwestern Pakistan. Pakistan Journal of Science, 72(2), 112.

    Google Scholar 

  • Abbas, S., Kousar, S., & Pervaiz, A. (2021a). Effects of energy consumption and ecological footprint on CO2 emissions: An empirical evidence from Pakistan. Environment, Development and Sustainability, 23(9), 13364–13381.

    Google Scholar 

  • Abbas, S., Kousar, S., Shirazi, S. A., Yaseen, M., & Latif, Y. (2021b). Illuminating Empirical Evidence of Climate Change: Impacts on Rice Production in the Punjab Regions, Pakistan. Agricultural Research, 1–16.

  • Abbas, S., Mahmood, M. J., & Yaseen, M. (2021). Assessing the potential for rooftop rainwater harvesting and its physio and socioeconomic impacts, Rawal watershed, Islamabad, Pakistan. Environment, Development and Sustainability, 23(12), 17942–17963.

    Google Scholar 

  • Abbas, S., Shirazi, S. A., Hussain, M. S., Yaseen, M., Shakarullah, K., Wahla, S. S., & Khurshid, M. (2020c). Impact of climate change on forest cover: Implications for carbon stock assessment and sustainable development in HKH region-Pakistan.

  • Adu, D. T., Kuwornu, J. K., Anim-Somuah, H., & Sasaki, N. (2018). Application of livelihood vulnerability index in assessing smallholder maize farming households’ vulnerability to climate change in Brong-Ahafo region of Ghana. Kasetsart Journal of Social Sciences, 39(1), 22–32.

    Google Scholar 

  • Ahmad, D., & Afzal, M. (2020a). Flood hazards and factors influencing household flood perception and mitigation strategies in Pakistan. Environmental Science and Pollution Research International, 27(13), 15375–15387.

    Google Scholar 

  • Ahmad, D., & Afzal, M. (2020b). Climate change adaptation impact on cash crop productivity and income in Punjab province of Pakistan. Environmental Science and Pollution Research, 27, 30767–30777.

    CAS  Google Scholar 

  • Ahmad, D., & Afzal, M. (2021a). Flood hazards, human displacement and food insecurity in rural riverine areas of Punjab, Pakistan: Policy implications. Environmental Science and Pollution Research, 28(8), 10125–10139.

    Google Scholar 

  • Ahmad, D., & Afzal, M. (2021b). Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan. Environment, Development and Sustainability, 1–21.

  • Ahmad, D., & Afzal, M. (2022). Flood risk public perception in flash flood-prone areas of Punjab, Pakistan. Environmental Science and Pollution Research, 1–13.

  • Ahmad, D., Afzal, M., & Rauf, A. (2019). Analysis of wheat farmers’ risk perceptions and attitudes: Evidence from Punjab, Pakistan. Natural Hazards, 95(3), 845–861.

    Google Scholar 

  • Ahmad, D., Afzal, M., & Rauf, A. (2020). Environmental risks among rice farmers and factors influencing their risk perceptions and attitudes in Punjab, Pakistan. Environmental Science and Pollution Research, 27(17), 21953–21964.

    Google Scholar 

  • Ahmad, D., Afzal, M., & Rauf, A. (2021). Flood hazards adaptation strategies: A gender-based disaggregated analysis of farm-dependent Bait community in Punjab, Pakistan. Environment, Development and Sustainability, 23(1), 865–886.

    Google Scholar 

  • Alam, G. M. (2017). Livelihood cycle and vulnerability of rural households to climate change and hazards in Bangladesh. Environmental Management, 59(5), 777–791.

  • Alam, A., Bhat, M. S., & Maheen, M. (2020). Using Landsat satellite data for assessing the land use and land cover change in Kashmir valley. GeoJournal, 85(6), 1529–1543.

    Google Scholar 

  • Alam, G. M., Alam, K., & Mushtaq, S. (2017). Climate change perceptions and local adaptation strategies of hazard-prone rural households in Bangladesh. Climate Risk Management, 17, 52–63.

    Google Scholar 

  • Ali, S., Liu, Y., Ishaq, M., Shah, T., Ilyas, A., & Din, I. U. (2017). Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods, 6(6), 39.

    Google Scholar 

  • Allen, J. T. (2018). Climate change and severe thunderstorms. In Oxford research encyclopedia of climate science.

  • Ambelu, A., Birhanu, Z., Tesfaye, A., Berhanu, N., Muhumuza, C., Kassahun, W., …Woldemichael, K. (2017). Intervention pathways towards improving the resilience of pastoralists: A study from Borana communities, southern Ethiopia. Weather and Climate Extremes, 17, 7–16.

    Google Scholar 

  • Angelakis, A. N., Antoniou, G., Voudouris, K., Kazakis, N., Dalezios, N., & Dercas, N. (2020). History of floods in Greece: Causes and measures for protection. Natural Hazards, 101(3), 833.

    Google Scholar 

  • Arnall, A. (2014). A climate of control: Flooding, displacement and planned resettlement in the Lower Zambezi River valley, MOzambique. The Geographical Journal, 180(2), 141–150.

    Google Scholar 

  • Arora, N. K. (2019). Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability, 2(2), 95–96.

    Google Scholar 

  • Arora-Jonsson, S. (2011). Virtue and vulnerability: Discourses on women, gender and climate change. Global Environmental Change, 21(2), 744–751.

    Google Scholar 

  • Aryal, J. P., Sapkota, T. B., Khurana, R., Khatri-Chhetri, A., Rahut, D. B., & Jat, M. L. (2020). Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environment, Development and Sustainability, 22(6), 5045–5075.

    Google Scholar 

  • Ashraf, M., & Shakir, A. S. (2018). Prediction of river bank erosion and protection works in a reach of Chenab River, Pakistan. Arabian Journal of Geosciences, 11(7), 1–11.

    Google Scholar 

  • Assan, J. K., & Kumar, P. (2009). Introduction: Livelihood options for the poor in the changing environment. Journal of International Development: THe Journal of the Development Studies Association, 21(3), 393–402.

    Google Scholar 

  • Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., …Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147.

    Google Scholar 

  • Ayal, D. Y., Radeny, M., Desta, S., & Gebru, G. (2018). Climate variability, perceptions of pastoralists and their adaptation strategies: Implications for livestock system and diseases in Borana zone. International Journal of Climate Change Strategies and Management., 10, 596.

    Google Scholar 

  • Balgah, R. A., Bang, H. N., & Fondo, S. A. (2019). Drivers for coping with flood hazards: Beyond the analysis of single cases. Jàmbá: Journal of Disaster Risk Studies, 11(1), 1–9.

    Google Scholar 

  • Barrett, K. (2019). Reducing wildfire risk in the wildland-urban interface: Policy, trends, and solutions. Idaho L. Rev., 55, 3.

    Google Scholar 

  • Bender, I. M., Kissling, W. D., Böhning-Gaese, K., Hensen, I., Kühn, I., Nowak, L., …Schleuning, M. (2019). Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Scientific Reports, 9(1), 1–12.

    CAS  Google Scholar 

  • Bernier, J. F., Chassiot, L., & Lajeunesse, P. (2021). Assessing bank erosion hazards along large rivers in the Anthropocene: a geospatial framework from the St. Lawrence fluvial system. Geomatics, Natural Hazards and Risk, 12(1), 1584–1615.

    Google Scholar 

  • Bhatti, A. Z., Farooque, A. A., Krouglicof, N., Peters, W., Acharya, B., Li, Q., & Ahsan, M. S. (2021). Climate change impacts on precipitation and temperature in Prince Edward Island, Canada. World Water Policy.

  • Bhuiyan, M. A. H., Islam, S. D. U., & Azam, G. (2017). Exploring impacts and livelihood vulnerability of riverbank erosion hazard among rural household along the river Padma of Bangladesh. Environmental Systems Research, 6(1), 1–15.

    Google Scholar 

  • Biswas, R., & Anwaruzzaman, A. K. M. (2019). Measuring hazard vulnerability by bank erosion of the Ganga river in Malda district using PAR model. Journal of Geography, Environment and Earth Science International, 22(1), 1–15.

    Google Scholar 

  • BOS Punjab. (2019a). Annual Statistics 2019a, Bureau of Statistics Lahore Punjab, Government of Pakistan.

  • BOS Punjab. (2020). Annual Statistics 2020, Bureau of Statistics Lahore Punjab, Government of Pakistan.

  • Brenes, J. C., Fornaguera, J., & Sequeira-Cordero, A. (2020). Environmental enrichment and physical exercise attenuate the depressive-like effects induced by social isolation stress in rats. Frontiers in Pharmacology, 11, 804.

    CAS  Google Scholar 

  • Bryan, E., Ringler, C., Okoba, B., Roncoli, C., Silvestri, S., & Herrero, M. (2013). Adapting agriculture to climate change in Kenya: Household strategies and determinants. Journal of Environmental Management, 114, 26–35.

    Google Scholar 

  • Bubeck, P., Otto, A., & Weichselgartner, J. (2017). Societal impacts of flood hazards. In Oxford Research Encyclopedia of Natural Hazard Science.

  • Bukhari, S. I. A., & Rizvi, S. H. (2015). Impact of floods on women: with special reference to flooding experience of 2010 flood in Pakistan. Journal of Geography & Natural Disasters.

  • Cavaillé, P., Ducasse, L., Breton, V., Dommanget, F., Tabacchi, E., & Evette, A. (2015). Functional and taxonomic plant diversity for riverbank protection works: Bioengineering techniques close to natural banks and beyond hard engineering. Journal of Environmental Management, 151, 65–75.

    Google Scholar 

  • Chamber, R., & Conway, G. R. (1992). Sustainable Livelihood: Practical Concept For The 21st Century.

  • Daniell, H., Lin, C. S., Yu, M., & Chang, W. J. (2016). Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biology, 17(1), 1–29.

    Google Scholar 

  • Das, B., Pal, S. C., Malik, S., & Chakrabortty, R. (2019). Living with floods through geospatial approach: A case study of Arambag CD Block of Hugli District, West Bengal, India. SN Applied Sciences, 1(4), 1–10.

    CAS  Google Scholar 

  • Das, M., Das, A., Momin, S., & Pandey, R. (2020). Mapping the effect of climate change on community livelihood vulnerability in the riparian region of Gangatic Plain, India. Ecological Indicators, 119, 106815.

    Google Scholar 

  • Dong, Y., & Frangopol, D. M. (2016). Probabilistic time-dependent multihazard life-cycle assessment and resilience of bridges considering climate change. Journal of Performance of Constructed Facilities, 30(5), 04016034.

    Google Scholar 

  • Doocy, S., Russell, E., Gorokhovich, Y., & Kirsch, T. (2013). Disaster preparedness and humanitarian response in flood and landslide-affected communities in Eastern Uganda. Disaster Prevention and Management., 22, 326.

    Google Scholar 

  • Douglas, I., Garvin, S., Lawson, N., Richards, J., Tippett, J., & White, I. (2010). Urban pluvial flooding: A qualitative case study of cause, effect and nonstructural mitigation. Journal of Flood Risk Management, 3(2), 112–125.

    Google Scholar 

  • Dragićević, S., Tošić, R., Stepić, M., Živković, N., & Novković, I. (2013). Consequences of the river bank erosion in the southern part of the Pannonian Basin: Case study–Serbia and the Republic of Srpska. Forum Geografic, 12(1), 5–15.

    Google Scholar 

  • Dragicevic, S., Zivkovic, N., Roksandic, M., Kostadinov, S., Novkovic, I., Tosic, R., …Blagojevic, B. (2012). Land use changes and environmental problems caused by bank erosion: A case study of the Kolubara River Basin in Serbia(pp. 3–20). InTech, Rijeka, Croatia.

  • Eckstein, D., Künzel, V., Schäfer, L., & Winges, M. (2019). Global climate risk index 2020. Bonn: Germanwatch.

  • Fanta, V., Šálek, M., & Sklenicka, P. (2019). How long do floods throughout the millennium remain in the collective memory? Nature Communications, 10(1), 1–9.

    CAS  Google Scholar 

  • Florsheim, J. L., Mount, J. F., & Chin, A. (2008). Bank erosion as a desirable attribute of rivers. BioScience, 58(6), 519–529.

    Google Scholar 

  • Gentle, P., Thwaites, R., Race, D., & Alexander, K. (2014). Differential impacts of climate change on communities in the middle hills region of Nepal. Natural hazards, 74(2), 815–836.

  • Gerlitz, L. (2016). Design management as a domain of smart and sustainable enterprise: Business modelling for innovation and smart growth in Industry 4.0. Entrepreneurship and Sustainability Issues, 3(3), 244.

    Google Scholar 

  • Gerlitz, L., Vorogushyn, S., Apel, H., Gafurov, A., Unger-Shayesteh, K., & Merz, B. (2016). A statistically based seasonal precipitation forecast model with automatic predictor selection and its application to central and south Asia. Hydrology and Earth System Sciences, 20(11), 4605–4623.

    Google Scholar 

  • Glago, F. J. (2019). Household disaster awareness and preparedness: A case study of flood hazards in Asamankese in the West Akim Municipality of Ghana. Jamba: Journal of Disaster Risk Studies, 11(1), 1–11.

    Google Scholar 

  • Gorst, C., Kwok, C. S., Aslam, S., Buchan, I., Kontopantelis, E., Myint, P. K., …Mamas, M. A. (2015). Long-term glycemic variability and risk of adverse outcomes: A systematic review and meta-analysis. Diabetes Care, 38(12), 2354–2369.

    CAS  Google Scholar 

  • Green, D., & Raygorodetsky, G. (2010). Indigenous knowledge of a changing climate. Climatic Change, 100(2), 239.

    Google Scholar 

  • Hahn, S. E., & Murphy, L. R. (2008). A short scale for measuring safety climate. Safety science, 46(7), 1047–1066.

  • Hahn, M. B., Riederer, A. M., & Foster, S. O. (2009). The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change—A case study in Mozambique. Global Environmental Change, 19(1), 74–88.

    Google Scholar 

  • Harries, T. (2012). The anticipated emotional consequences of adaptive behaviour—Impacts on the take-up of household flood-protection measures. Environment and Planning A, 44(3), 649–668.

    Google Scholar 

  • Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., …Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3(9), 816–821.

    Google Scholar 

  • Howe, P. D., Markowitz, E. M., Lee, T. M., Ko, C. Y., & Leiserowitz, A. (2013). Global perceptions of local temperature change. Nature Climate Change, 3(4), 352–356.

    Google Scholar 

  • Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., …Wang, G. (2017). Dryland climate change: Recent progress and challenges. Reviews of Geophysics, 55(3), 719–778.

    Google Scholar 

  • Huong, N. T. L., Yao, S., & Fahad, S. (2019). Assessing household livelihood vulnerability to climate change: The case of Northwest Vietnam. Human and Ecological Risk Assessment: An International Journal, 25(5), 1157–1175.

    Google Scholar 

  • Huong, P. T. L., Tu, N., Lan, H., Van Quy, N., Tuan, P. A., Dinh, N. X., & Le, A. T. (2018). Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As (V) ions from aqueous solution. RSC advances, 8(22), 12376–12389.

  • IIPCC. (2014). Global Warming of 1.5 °C Report Intergovernmental Panel of Climate Change https://www.ipcc.ch/site/assets/uploads/sites/2/2014/06/SR15_Full_Report_High_Res.pdf

  • IPCC (2017). AR4 Climate Change 2007:Synthesis Report Contribution of Working Groups I, II and III to the Fourth Assess- ment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_full_report.pdf

  • IIPCC. (2017). Global Warming of 1.5 °C Report Intergovernmental Panel of Climate Change https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf

  • IIPCC. (2018). Global Warming of 1.5 °C Report Intergovernmental Panel of Climate Change https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf

  • Iqbal, M. M., Abid, I., Hussain, S., Shahzad, N., Waqas, M. S., & Iqbal, M. J. (2020). The effects of regional climatic condition on the spread of COVID-19 at global scale. Science of the Total Environment, 739, 140101.

    CAS  Google Scholar 

  • Islam, M. (2008). River bank erosion and sustainable protection strategies. In Proceedings 4th International Conference on Scour and Erosion (ICSE-4). November 5–7, 2008, Tokyo, Japan (pp. 316–323).

  • Islam, M. A., Parvin, S., & Farukh, M. A. (2017). Impacts of riverbank erosion hazards in the Brahmaputra floodplain areas of Mymensingh in Bangladesh. Progressive Agriculture, 28(2), 73–83.

    Google Scholar 

  • Islam, M. R., & Hasan, M. (2016). Climate-induced human displacement: A case study of Cyclone Aila in the south-west coastal region of Bangladesh. Natural Hazards, 81(2), 1051–1071.

    Google Scholar 

  • Islam, R., & Walkerden, G. (2015). How do links between households and NGOs promote disaster resilience and recovery? A case study of linking social networks on the Bangladeshi coast. Natural Hazards, 78(3), 1707–1727.

    Google Scholar 

  • James, N. C., Van Niekerk, L., Whitfield, A. K., Potts, W. M., Götz, A., & Paterson, A. W. (2013). Effects of climate change on South African estuaries and associated fish species. Climate Research, 57(3), 233–248.

    Google Scholar 

  • Jonkman, S. N., & Vrijling, J. K. (2008). Loss of life due to floods. Journal of Flood Risk Management, 1(1), 43–56.

    Google Scholar 

  • Kakinuma, K., Puma, M. J., Hirabayashi, Y., Tanoue, M., Baptista, E. A., & Kanae, S. (2020). Flood-induced population displacements in the world. Environmental Research Letters, 15(12), 124029.

    CAS  Google Scholar 

  • Kam, P. M., Aznar-Siguan, G., Schewe, J., Milano, L., Ginnetti, J., Willner, S., …Bresch, D. N. (2021). Global warming and population change both heighten future risk of human displacement due to river floods. Environmental Research Letters, 16(4), 044026.

    Google Scholar 

  • Keshavarz Ghorabaee, M., Amiri, M., Zavadskas, E. K., & Antucheviciene, J. (2017). Supplier evaluation and selection in fuzzy environments: A review of MADM approaches. Economic Research-Ekonomska Istraživanja, 30(1), 1073–1118.

    Google Scholar 

  • Kgosikoma, K. R., Lekota, P. C., & Kgosikoma, O. E. (2018). Agro-pastoralists’ determinants of adaptation to climate change. International Journal of Climate Change Strategies and Management., 10, 488.

    Google Scholar 

  • Khan, S. A. R., Yu, Z., Belhadi, A., & Mardani, A. (2020). Investigating the effects of renewable energy on international trade and environmental quality. Journal of Environmental management, 272, 111089.

  • Khan, N. A., Gao, Q., Abid, M., & Shah, A. A. (2021). Mapping farmers’ vulnerability to climate change and its induced hazards: Evidence from the rice-growing zones of Punjab, Pakistan. Environmental Science and Pollution Research, 28(4), 4229–4244.

    Google Scholar 

  • Khosravi, K., Shahabi, H., Pham, B. T., Adamowski, J., Shirzadi, A., Pradhan, B., …Prakash, I. (2019). A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology, 573, 311–323.

    Google Scholar 

  • Kimaro, E. G., Mor, S. M., & Toribio, J. A. L. (2018). Climate change perception and impacts on cattle production in pastoral communities of northern Tanzania. Pastoralism, 8(1), 1–16.

    Google Scholar 

  • King, H. (2009). The use of groynes for riverbank erosion protection. In Proceeding of river hydraulics, stormwater and flood management conference. University of Stellenbosch.

  • Klaassen, G. J., Pilarczyk, K. W., & San, D. C. (2005). River bank erosion and mitigation strategies in Vietnam. In Van, A.,& vam Beek, T. (Ed.), Floods from Defence to Management (pp. 269–279).

  • Kreft, C., Huber, R., Wuepper, D., & Finger, R. (2021). The role of non-cognitive skills in farmers’ adoption of climate change mitigation measures. Ecological Economics, 189, 107169.

    Google Scholar 

  • Kret, E., Czop, M., & Pietrucin, D. (2017). Requirements for numerical hydrogeological model implementation for predicting the environmental impact of the mine closure based on the example of the Zn. In 13th International Mine Water Association Congress–Mine Water & Circular Economy. Lappeenranta University of Technology, Lappeenranta (pp. 703–710).

  • Kron, W., Eichner, J., & Kundzewicz, Z. W. (2019). Reduction of flood risk in Europe-Reflections from a reinsurance perspective. Journal of Hydrology, 576, 197–209.

    Google Scholar 

  • Kukal, M. S., & Irmak, S. (2018). Climate-driven crop yield and yield variability and climate change impacts on the US Great Plains agricultural production. Scientific Reports, 8(1), 1–18.

    Google Scholar 

  • Lechowska, E. (2018). What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements. Natural Hazards, 94(3), 1341–1366.

    Google Scholar 

  • Lecina-Diaz, J., Martínez-Vilalta, J., Alvarez, A., Banqué, M., Birkmann, J., Feldmeyer, D., …Retana, J. (2021). Characterizing forest vulnerability and risk to climate-change hazards. Frontiers in Ecology and the Environment, 19(2), 126–133.

    Google Scholar 

  • Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697.

    CAS  Google Scholar 

  • Lucas, M. P., & Pabuayon, I. M. (2011). Risk perceptions, attitudes, and influential factors of rainfed lowland rice farmers in Ilocos Norte, Philippines. Asian Journal of Agriculture and Development, 8, 61–77.

    Google Scholar 

  • Mahanta, R., & Das, D. (2017). Flood induced vulnerability to poverty: Evidence from Brahmaputra Valley, Assam, India. International Journal of Disaster Risk Reduction, 24, 451–461.

    Google Scholar 

  • Mahmood, F., Khokhar, M. F., & Mahmood, Z. (2020). Examining the relationship of tropospheric ozone and climate change on crop productivity using the multivariate panel data techniques. Journal of Environmental Management, 272, 111024.

    CAS  Google Scholar 

  • Maiti, S., Jha, S. K., Garai, S., Nag, A., Bera, A. K., Paul, V., …Deb, S. M. (2017). An assessment of social vulnerability to climate change among the districts of Arunachal Pradesh, India. Ecological Indicators, 77, 105–113.

    Google Scholar 

  • Maria, A. N. (2021). Meghna riverbank erosion on lives and livelihoods of rural people: Impacts and coping strategies. Bulletin of Geography. Physical Geography Series, 20(1), 45–56.

    Google Scholar 

  • Mavhura, E., Manyena, B., & Collins, A. E. (2017). An approach for measuring social vulnerability in context: The case of flood hazards in Muzarabani district, Zimbabwe. Geoforum, 86, 103–117.

    Google Scholar 

  • Mazhar, N., Mirza, A. I., Abbas, S., Akram, M. A. N., Ali, M., & Javid, K. (2021). Effects of climatic factors on the sedimentation trends of Tarbela Reservoir, Pakistan. SN Applied Sciences, 3(1), 1–9.

    Google Scholar 

  • Mekuyie, M., Jordaan, A., & Melka, Y. (2018). Understanding resilience of pastoralists to climate change and variability in the Southern Afar Region, Ethiopia. Climate Risk Management, 20, 64–77.

    Google Scholar 

  • Munyai, R. B., Nethengwe, N. S., & Musyoki, A. (2019). An assessment of flood vulnerability and adaptation: A case study of Hamutsha-Muungamunwe village, Makhado municipality. Jàmbá: Journal of Disaster Risk Studies, 11(2), 1–8.

    Google Scholar 

  • Muricho, D. N., Otieno, D. J., Oluoch-Kosura, W., & Jirström, M. (2019). Building pastoralists’ resilience to shocks for sustainable disaster risk mitigation: Lessons from West Pokot County, Kenya. International Journal of Disaster Risk Reduction, 34, 429–435.

    Google Scholar 

  • Murniati, K., Mulyo, J. H., & Hartono, S. (2017). The livelihood vulnerability to climate change of two different farmer communities in Tanggamus Region, Lampung Province, Indonesia. Asian Journal of Agriculture and Development, 14, 1–16.

    Google Scholar 

  • Nasiri, H., Yusof, M. J. M., & Ali, T. A. M. (2016). An overview to flood vulnerability assessment methods. Sustainable Water Resources Management, 2(3), 331–336.

    Google Scholar 

  • Naz, B. S., Kao, S. C., Ashfaq, M., Gao, H., Rastogi, D., & Gangrade, S. (2018). Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States. Journal of Hydrology, 556, 359–370.

    Google Scholar 

  • NDMA. (2017). Annual Report, 2017 National Disaster Management Authority, Islamabad Pakistan.

  • NDMA. (2020). Annual Report 2020, National Disaster Management Authority, Government of Pakistan.

  • Nyarko, A. D., & Kassai, Z. (2017). High rice import as a threat to food security and a hindrance to sustainable rice production in Ghana. Archives of Current Research International, 7, 1–13.

    Google Scholar 

  • Oberhagemann, K., Haque, A. M., & Thompson, A. (2020). A century of riverbank protection and river training in Bangladesh. Water, 12(11), 3018.

    Google Scholar 

  • Ogurtsov, M., Lindholm, M., Jalkanen, R., & Veretenenko, S. V. (2017). North Atlantic sea surface temperature, solar activity and the climate of Northern Fennoscandia. Advances in Space Research, 59(4), 980–986.

    Google Scholar 

  • Opiyo, F., Wasonga, O., Nyangito, M., Schilling, J., & Munang, R. (2015). Drought adaptation and coping strategies among the Turkana pastoralists of northern Kenya. International Journal of Disaster Risk Science, 6(3), 295–309.

    Google Scholar 

  • Paudel, S., Kumar, P., Dasgupta, R., Johnson, B. A., Avtar, R., Shaw, R., …Kanbara, S. (2021). Nexus between water security framework and public health: A comprehensive scientific review. Water, 13(10), 1365.

    Google Scholar 

  • PBS. (2021). Economic Survey of Pakistan 2021, Ministry of Finance Islamabad, Government of Pakistan.

  • PDMA Punjab. (2018). Annual Report 2018, Provincial Disaster Management Authority Lahore Punjab, Government of Pakistan.

  • PDMA Punjab. (2019b). Annual Report 2019b, Provincial Disaster Management Authority Lahore Punjab, Government of Pakistan.

  • Phukan, A., Goswami, R., Borah, D., Nath, A., & MaiIanta, C. (2012). River bank erosion and restoration in the Brahmaputra River in India. The Clarion-International Multidisciplinary Journal, 1(1), 1–7.

    Google Scholar 

  • PMD. (2019). Annual Weather Report 2019, Pakistan Metrological Department, Government of Pakistan.

  • Polsky, C., Neff, R., & Yarnal, B. (2007). Building comparable global change vulnerability assessments: The vulnerability scoping diagram. Global Environmental Change, 17(3–4), 472–485.

    Google Scholar 

  • Qaisrani, A., Umar, M. A., Siyal, G. E. A., & Salik, K. M. (2018). What defines livelihood vulnerability in rural semi-arid areas? Evidence from Pakistan. Earth Systems and Environment, 2(3), 455–475.

    Google Scholar 

  • Rahman, M. K., & Schmidlin, T. W. (2014). The perception and impact of natural hazards on fishing communities of Kutubdia Island, Bangladesh. Geographical Review, 104(1), 71–86.

    Google Scholar 

  • Rasul, G., Neupane, N., Hussain, A., & Pasakhala, B. (2021). Beyond hydropower: Towards an integrated solution for water, energy and food security in South Asia. International Journal of Water Resources Development, 37(3), 466–490.

    Google Scholar 

  • Recking, A., Piton, G., Montabonnet, L., Posi, S., & Evette, A. (2019). Design of fascines for riverbank protection in alpine rivers: Insight from flume experiments. Ecological Engineering, 138, 323–333.

    Google Scholar 

  • Regasa, D. T., & Akirso, N. A. (2019). Determinants of climate change mitigation and adaptation strategies: An application of protection motivation theory. Rural Sustainability Research, 42(337), 9–25.

    Google Scholar 

  • Rizwan, M., Ping, Q., Saboor, A., Ahmed, U. I., Zhang, D., Deyi, Z., & Teng, L. (2020). Measuring rice farmers’ risk perceptions and attitude: Evidence from Pakistan. Human and Ecological Risk Assessment: An International Journal, 26(7), 1832–1847.

    CAS  Google Scholar 

  • Roslan, Z. A., Naimah, Y., & Roseli, Z. A. (2012). River bank erosion risk potential with regards to soil erodibility. River Basin Management VII: Wessex Institute of Technology, UK, 289.

  • Salik, K. M., & Jahangirul Hasson, S., S. (2015). Climate change vulnerability and adaptation options for the coastal communities of Pakistan. Ocean & Coastal Management, 112, 61–73.

    Google Scholar 

  • Sam, T. T., Khoi, D. N., Thao, N. T. T., Nhi, P. T. T., Quan, N. T., Hoan, N. X., & Nguyen, V. T. (2019). Impact of climate change on meteorological, hydrological and agricultural droughts in the Lower Mekong River Basin: A case study of the Srepok Basin, Vietnam. Water and Environment Journal, 33(4), 547–559.

    Google Scholar 

  • Saqib, S. E., Kuwornu, J. K., Panezia, S., & Ali, U. (2018). Factors determining subsistence farmers’ access to agricultural credit in flood-prone areas of Pakistan. Kasetsart Journal of Social Sciences, 39(2), 262–268.

    Google Scholar 

  • Sarker, M. H., Akter, J., & Ruknul, M. (2011). River bank protection measures in the Brahmaputra-Jamuna River: Bangladesh experience. In International Seminar on’River, Society and Sustainable Development, Dibrugarh University, India (Vol. 121, pp. 1–14).

  • Sathyan, A. R., Funk, C., Aenis, T., Winker, P., & Breuer, L. (2018). Sensitivity analysis of a climate vulnerability index-a case study from Indian watershed development programmes. Climate Change Responses, 5(1), 1–14.

    Google Scholar 

  • Schellnhuber, H. J., Frieler, K., & Kabat, P. (2014). The elephant, the blind, and the intersectoral intercomparison of climate impacts. Proceedings of the National Academy of Sciences, 111(9), 3225–3227.

    CAS  Google Scholar 

  • Schilling, J., Vivekananda, J., Khan, M. A., & Pandey, N. (2013). Vulnerability to environmental risks and effects on community resilience in mid-west Nepal and south-east Pakistan. Environment and Natural Resources Research, 3(4), 27.

  • Schilling, J., Hertig, E., Tramblay, Y., & Scheffran, J. (2020). Climate change vulnerability, water resources and social implications in North Africa. Regional Environmental Change, 20(1), 1–12.

    Google Scholar 

  • Shah, A. A., Ye, J., Abid, M., Khan, J., & Amir, S. M. (2018). Flood hazards: Household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Natural Hazards, 93(1), 147–165.

    Google Scholar 

  • Shah, K. U., Dulal, H. B., Johnson, C., & Baptiste, A. (2013). Understanding livelihood vulnerability to climate change: Applying the livelihood vulnerability index in Trinidad and Tobago. Geoforum, 47, 125–137.

    Google Scholar 

  • Shahzad, M. F., & Abdulai, A. (2020). Adaptation to extreme weather conditions and farm performance in rural Pakistan. Agricultural Systems, 180, 102772.

    Google Scholar 

  • Shahzad, S., & Rijal, H. B. (2019). Preferred vs neutral temperatures and their implications on thermal comfort and energy use: Workplaces in Japan, Norway and the UK. Energy Procedia, 158, 3113–3118.

  • Shahzad, L., Tahir, A., Sharif, F., Khan, W. U. D., Farooq, M. A., Abbas, A., & Saqib, Z. A. (2019a). Vulnerability, well-being, and livelihood adaptation under changing environmental conditions: a case from mountainous region of Pakistan. Environmental Science and Pollution Research, 26(26), 26748–26764.

  • Shahzad, L., Tahir, A., Sharif, F., Hayyat, M. U., Ghani, N., Farhan, M., & Dogar, S. S. (2019b). Does livelihood vulnerability index justify the socio-economic status of mountainous community? A case study of post-earthquake ecological adaptation of Balakot population. Applied Ecology and Environmental Research, 17(3), 6605–6624.

  • Shahzad, L., Shah, M., Saleem, M., Mansoor, A., Sharif, F., Tahir, A., & Ghafoor, G. (2021). Livelihood vulnerability index: a pragmatic assessment of climatic changes in flood affected community of Jhok Reserve Forest, Punjab, Pakistan. Environmental Earth Sciences, 80(7), 1–16.

  • Shahzad, U. (2020). Environmental taxes, energy consumption, and environmental quality: Theoretical survey with policy implications. Environmental Science and Pollution Research, 27(20), 24848–24862.

    Google Scholar 

  • Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., …Trisos, C. H. (2021). A framework for complex climate change risk assessment. One Earth, 4(4), 489–501.

    Google Scholar 

  • Singh, N., Tang, Y., Zhang, Z., & Zheng, C. (2020). COVID-19 waste management: Effective and successful measures in Wuhan, China. Resources, Conservation, and Recycling, 163, 105071.

    Google Scholar 

  • Smith, H. G., Spiekermann, R., Dymond, J., & Basher, L. (2019). Predicting spatial patterns in riverbank erosion for catchment sediment budgets. New Zealand Journal of Marine and Freshwater Research, 53(3), 338–362.

    CAS  Google Scholar 

  • Solín, Ľ, Madajova, M. S., & Michaleje, L. (2018). Vulnerability assessment of households and its possible reflection in flood risk management: The case of the upper Myjava basin, Slovakia. International Journal of Disaster Risk Reduction, 28, 640–652.

    Google Scholar 

  • Spijkers, J., & Boonstra, W. J. (2017). Environmental change and social conflict: The northeast Atlantic mackerel dispute. Regional Environmental Change, 17(6), 1835–1851.

    Google Scholar 

  • Tariq, M. A. U. R., Farooq, R., & van de Giesen, N. (2020). A critical review of flood risk management and the selection of suitable measures. Applied Sciences, 10(23), 8752.

    CAS  Google Scholar 

  • Teixeira, E. I., Fischer, G., Van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206–215.

    Google Scholar 

  • Teo, M., Goonetilleke, A., Ahankoob, A., Deilami, K., & Lawie, M. (2018). Disaster awareness and information seeking behaviour among residents from low socio-economic backgrounds. International Journal of Disaster Risk Reduction, 31, 1121–1131.

    Google Scholar 

  • Thakur, P. K., Laha, C., & Aggarwal, S. P. (2012). River bank erosion hazard study of river Ganga, upstream of Farakka barrage using remote sensing and GIS. Natural Hazards, 61(3), 967–987.

    Google Scholar 

  • Török, I. (2018). Qualitative assessment of social vulnerability to flood hazards in Romania. Sustainability, 10(10), 3780.

    Google Scholar 

  • Tsakiris, G. (2014). Flood risk assessment: Concepts, modelling, applications. Natural Hazards and Earth System Sciences, 14(5), 1361–1369.

    Google Scholar 

  • Tullos, D., Byron, E., Galloway, G., Obeysekera, J., Prakash, O., & Sun, Y. H. (2016). Review of challenges of and practices for sustainable management of mountain flood hazards. Natural Hazards, 83(3), 1763–1797.

    Google Scholar 

  • Turral, H., Burke, J., & Faurès, J. M. (2011). Climate change, water and food security (No. 36). Food and Agriculture Organization of the United Nations (FAO).

  • Ullah, I., Akhtar, K. M., Shahzadi, I., Farooq, M., & Yasmin, R. (2016). Encouraging knowledge sharing behavior through team innovation climate, altruistic intention and organizational culture. Knowledge Management & E-Learning: An International Journal, 8(4), 628–645.

    Google Scholar 

  • Wako, G., Tadesse, M., & Angassa, A. (2017). Camel management as an adaptive strategy to climate change by pastoralists in southern Ethiopia. Ecological Processes, 6(1), 1–12.

    Google Scholar 

  • Week, D. A., & Wizor, C. H. (2020). Effects of flood on food security, livelihood and socio-economic characteristics in the flood-prone areas of the core Niger Delta, Nigeria. Asian Journal of Geographical Research, 1–17.

  • Wilkinson, E., Lovell, E., Carby, B., Barclay, J., & Robertson, R. E. (2016). The dilemmas of risk-sensitive development on a small volcanic island. Resources, 5(2), 21.

    Google Scholar 

  • World Bank, (2019). The World Bank Annual Report 2019: Ending Poverty, Investing in Opportunity https://openknowledge.worldbank.org/handle/10986/32333.

  • Yamane, T. (1967). Research methods: Determination of sample size. University of Florida.

    Google Scholar 

  • Yaseen, M., Waseem, M., Latif, Y., Azam, M. I., Ahmad, I., Abbas, S., …Nabi, G. (2020). Statistical downscaling and hydrological modeling-based runoff simulation in trans-boundary Mangla Watershed Pakistan. Water, 12(11), 3254.

    Google Scholar 

  • Zeleňáková, M., Gaňová, L., Purcz, P., Horský, M., Satrapa, L., Blišťan, P., & Diaconu, D. C. (2017). Mitigation of the adverse consequences of floods for human life, infrastructure, and the environment. Natural Hazards Review, 18(4), 05017002.

    Google Scholar 

  • Zhang, F., Welch, E. W., & Miao, Q. (2018). Public organization adaptation to extreme events: Mediating role of risk perception. Journal of Public Administration Research and Theory, 28(3), 371–387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilshad Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, D., Kanwal, M. & Afzal, M. Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index. Environ Dev Sustain 25, 9387–9415 (2023). https://doi.org/10.1007/s10668-022-02440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02440-1

Keywords

Navigation