Skip to main content

Advertisement

Log in

Selection of optimum green energy sources by considering environmental constructs and their technical criteria: a case study

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Optimum green energy sources selection needs a strategic decision for reducing the use of conventional resources. In the selection of optimum green resources, constraints like technical and customer requirements play an important role. The proposed integrated AHP-QFD approach has been applied to a specific northeastern region, India, to select the optimal green energy sources addressing the technical and customer requirements. AHP is used to calculate the intensity of relative priority for customer requirements. The main reason behind choosing AHP methodology is its reliability and consistency in decision-making process. The prime idea of QFD is to translate typical customer requirements into a significant technical requirement by means of transformation for every stage of development and selection. The relative priority and normalized priority of each technical requirement are computed using QFD transformation. An overall score for each green energy sources alternative is then calculated to select the optimum green energy sources based on conflicting multiple criteria. The proposed integrated methodology reveals that the solar energy is the optimum choice for future green energy investment projects followed by other sources likely hydropower, biomass and biogas, and it also suggests that exhausted source is replaced by the available sources for future clean energy planning. Based on the study findings, this research also provides guidelines for Tripura’s green energy expansion policy for practice. The uniqueness of the present research is to ascertain the relationship between needs and strategies by taking opinions from experts as well as residents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

GES:

Green energy sources

AHP:

Analytical Hierarchy Process

OWA:

Ordered Weighted Averaging

VIKOR:

Vlsekriterijuska Optimizacija I Komoromisno Resenje (Multi-criteria Optimization and Comoros Solution)

ANP:

Analytic Network Process

TOPSIS:

Technique for Order of Preference by Similarity to Ideal Solution

PROMETHEE:

Preference Ranking Organisation Method for Enrichment Evaluations

GHG:

Greenhouse gas

MCGP:

Multi-Choice Goal Programming

MCA:

Multi-Criteria Analysis

O&M:

Operation & maintenance

MAVT:

Multi-Attribute Value Theory

MULTIMOORA:

Multi-Objective Optimization by Ratio Analysis plus the full multiplicative form

COPRAS:

Complex Proportional Assessment

ELECTRE:

Elimination and Choice Expressing Reality

WLC:

Weighted Linear Combination

DEMATEL:

Decision Making Trial and Evaluation Laboratory

SWARA:

Stepwise Weight Assessment Ratio Analysis

WASPAS:

Weighted Aggregated Sum Product Assessment

EVAMIX:

Evaluation of Mixed Data

SWOT:

Strength, Weakness, Opportunities, Threats

WSM:

Weight Sum Model

MOOSRA:

Multi-Objective Optimization on The Basis of Simple Ratio Analysis

ARAS:

Additive Ratio Assessment

BOCR:

Benefits, Opportunities, Costs and Risks

TRs:

Technical Requirements

CRs:

Customer Requirements

QFD:

Quality Function Deployment

HOQ:

House of Quality

TREDA:

Tripura Renewable Energy Development Organization

PC:

Pairwise Comparison

PV:

Priority Values

CSI:

Customer Satisfaction Index

CO2 :

Carbon dioxide

MNRE:

Ministry of New and Renewable Energy

AFM:

Attribute Factor Measure

AFD:

Attribute Factor Dimensions

NWFM:

Normalized Weight Factor Measure Missing

\({A}_{1}\) :

Consumption

\({A}_{2}\) :

Consumption

\({A}_{3}\) :

Acceptability

\({A}_{4}\) :

Energy autarky

\({A}_{5}\) :

Cost effectiveness

\({A}_{6}\) :

Use of green energy

\({C}_{1}\) :

Energy needs

\({C}_{2}\) :

Management

\({C}_{3}\) :

Energy production

\({C}_{4}\) :

Emission reduction

\({C}_{5}\) :

Scope of fossil resources and firewood

\({C}_{6}\) :

Soundness in the face of external changes

\({M}_{1}\) :

Solar

\({M}_{2}\) :

Hydropower

\({M}_{3}\) :

Biogas

\({M}_{4}\) :

Biomass

\(k\) :

Perception of the decision maker

\(n\) :

Number of energy source alternatives

References

  • Al-Yahyai, S., Charabi, Y., Gastli, A., & Al-Badi, A. (2012). Wind farm land suitability indexing using multi-criteria analysis. Renewable Energy, 44, 80–87.

    Article  Google Scholar 

  • Aras, H., Erdoğmuş, Ş, & Koç, E. (2004). Multi-criteria selection for a wind observation station location using analytic hierarchy process. Renewable Energy, 29(8), 1383–1392.

    Article  Google Scholar 

  • Aydin, N. Y., Kentel, E., & Duzgun, H. S. (2013). GIS-based site selection methodology for hybrid renewable energy systems: A case study from western Turkey. Energy Conversion and Management, 70, 90–106.

    Article  Google Scholar 

  • Balezentiene, L., Streimikiene, D., & Balezentis, T. (2013). Fuzzy decision support methodology for sustainable energy crop selection. Renewable and Sustainable Energy Reviews, 17, 83–93.

    Article  Google Scholar 

  • Bhattacharya, A., Sarkar, B., & Mukherjee, S. K. (2005). Integrating AHP with QFD for robot selection under requirement perspective. International Journal of Production Research, 43(17), 3671–3685.

    Article  Google Scholar 

  • Bhowmik, C., Bhowmik, S., Ray, A., & Pandey, K. M. (2017). Optimal green energy planning for sustainable development: A review. Renewable and Sustainable Energy Reviews, 71, 796–813.

    Article  Google Scholar 

  • Bhowmik, C., Baruah, A., Bhowmik, S., & Ray, A. (2018a). Green energy sources selection for sustainable energy planning using multi-criteria decision-making approach. IOP Conference Series: Materials Science and Engineering, 377, 012029.

    Article  Google Scholar 

  • Bhowmik, C., Bhowmik, S., & Ray, A. (2018b). The effect of normalization tools on green energy sources selection using multi-criteria decision-making approach: A case study in India. Journal of Renewable and Sustainable Energy, 10, 065901.

    Article  Google Scholar 

  • Bhowmik, C., Bhowmik, S., & Ray, A. (2018c). Social acceptance of green energy determinants using principal component analysis. Energy, 160, 1030–1046.

    Article  Google Scholar 

  • Bhowmik, C., Bhowmik, S., & Ray, A. (2019a). Optimal green energy source selection: An eclectic decision. Energy and Environment, 31(5), 842–859.

    Article  Google Scholar 

  • Bhowmik, C., Dhar, S., & Ray, A. (2019b). Comparative analysis of MCDM methods for the evaluation of optimum green energy sources: A case study. International Journal of Decision Support System Technology, 11(4), 1–28.

    Article  Google Scholar 

  • Bhowmik, C., Bhowmik, S., & Ray, A. (2020a). Green energy sources selection for sustainable planning: A case study. IEEE Transactions on Engineering Management. https://doi.org/10.1109/TEM.2020.2983095.

    Article  Google Scholar 

  • Bhowmik, C., Kaviani, M. A., Ray, A., & Ocampo, L. (2020b). An integrated entropy-TOPSIS methodology for evaluating green energy sources. International Journal of Business Analytics, 7(3), 44–70.

    Article  Google Scholar 

  • Boucher, T. O., & MacStravic, E. L. (1991). Multi-attribute evaluation within a present value framework and its relation to the analytic hierarch process. The Engineering Economist, 37(1), 1–32.

    Article  Google Scholar 

  • Buchholz, T., Rametsteiner, E., Volk, T. A., & Luzadis, V. A. (2009). Multi criteria analysis for bioenergy systems assessments. Energy policy, 37(2), 484–495.

    Article  Google Scholar 

  • Büyüközkan, G., & Güleryüz, S. (2016). An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey. International Journal of Production Economics, 182, 435–448.

    Article  Google Scholar 

  • Büyüközkan, G., & Güleryüz, S. (2017). Evaluation of renewable energy resources in turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations. Energy, 123, 149–163.

    Article  Google Scholar 

  • Catalina, T., Virgone, J., & Blanco, E. (2011). Multi-source energy systems analysis using a multi-criteria decision aid methodology. Renewable Energy, 36(8), 2245–2252.

    Article  Google Scholar 

  • Çelikbilek, Y., & Tüysüz, F. (2016). An integrated grey based multi-criteria decision-making approach for the evaluation of renewable energy sources. Energy, 115, 1246–1258.

    Article  Google Scholar 

  • Chan, L. K., & Wu, M. L. (2002). Quality function deployment: A literature review. European Journal of Operation Research, 143(3), 463–497.

    Article  Google Scholar 

  • Chang, C. T. (2015). Multi-choice goal programming model for the optimal location of renewable energy facilities. Renewable and Sustainable Energy Reviews, 41, 379–389.

    Article  Google Scholar 

  • Cheng, C., Zhou, Y. H., Yue, K. W., Yang, J., He, Z. Y., & Liang, N. (2011). Study of SEA indicators system of urban green electricity power based on fuzzy AHP and DPSIR model. Energy Procedia, 12, 155–162.

    Article  Google Scholar 

  • Chiu, R. H., Lin, L. H., & Ting, S. C. (2014). Evaluation of green port factors and performance: A fuzzy AHP analysis. Mathematical problems in engineering. https://doi.org/10.1155/2014/802976.

    Article  Google Scholar 

  • Choudhary, D., & Shankar, R. (2012). An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510–521.

    Article  Google Scholar 

  • Chuang, P. T. (2001). Combining the analytic hierarchy process and quality function deployment for a location decision from a requirement perspective. The International Journal of Advanced Manufacturing Technology, 18(11), 842–849.

    Article  Google Scholar 

  • Chung, E. S., & Lee, K. S. (2009). Prioritization of water management for sustainability using hydrologic simulation model and multicriteria decision making techniques. Journal of Environmental Management, 90(3), 1502–1511.

    Article  Google Scholar 

  • Çolak, M., & Kaya, İ. (2017). Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey. Renewable and Sustainable Energy Reviews, 80, 840–853.

    Article  Google Scholar 

  • Datta, A., Ray, A., Bhattacharya, G., & Saha, H. (2011). Green energy sources (GES) selection based on multi-criteria decision analysis (MCDA). International Journal of Energy Sector Management, 5(2), 271–286.

    Article  Google Scholar 

  • Datta, A., Saha, D., Ray, A., & Das, P. (2014). Anti-islanding selection for grid-connected solar photovoltaic system applications: A MCDM based distance approach. Solar Energy, 110, 519–532.

    Article  Google Scholar 

  • Dey, P. K., & Cheffi, W. (2013). Green supply chain performance measurement using the analytic hierarchy process: a comparative analysis of manufacturing organisations. Production Planning and Control, 24(8–9), 702–720.

    Article  Google Scholar 

  • Ertay, T., Kahraman, C., & Kaya, İ. (2013). Evaluation of renewable energy alternatives using MACBETH and fuzzy AHP multicriteria methods: the case of Turkey. Technological and Economic Development of Economy, 19(1), 38–62.

    Article  Google Scholar 

  • Georgiou, D., Mohammed, E. S., & Rozakis, S. (2015). Multi-criteria decision making on the energy supply configuration of autonomous desalination units. Renewable Energy, 75, 459–467.

    Article  Google Scholar 

  • Ghenai, C., Albawab, M., & Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using multi-criteria decision-making model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580–597.

    Article  CAS  Google Scholar 

  • Hauser, J.R., & Clausing, D. (1988). The house of quality, Harvard business review.

  • Iddrisu, I., & Bhattacharyya, S. C. (2015). Sustainable energy development index: A multi-dimensional indicator for measuring sustainable energy development. Renewable and Sustainable Energy Reviews, 50, 513–530.

    Article  Google Scholar 

  • Kabak, M., & Dağdeviren, M. (2014). Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Conversion and Management, 79, 25–33.

    Article  Google Scholar 

  • Karaca, F., Raven, P. G., Machell, J., & Camci, F. (2015). A comparative analysis framework for assessing the sustainability of a combined water and energy infrastructure. Technological Forecasting and Social Change, 90, 456–468.

    Article  Google Scholar 

  • Kaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517–2527.

    Article  Google Scholar 

  • Kucukvar, M., Gumus, S., Egilmez, G., & Tatari, O. (2014). Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision-making method. Automation in Construction, 40, 33–43.

    Article  Google Scholar 

  • Kuleli Pak, B., Albayrak, Y. E., & Erensal, Y. C. (2015). Renewable energy perspective for Turkey using sustainability indicators. International Journal of Computational Intelligence Systems, 8(1), 187–197.

    Google Scholar 

  • Kurka, T., & Blackwood, D. (2013). Selection of MCA methods to support decision making for renewable energy developments. Renewable and Sustainable Energy Reviews, 27, 225–233.

    Article  Google Scholar 

  • Latinopoulos, D., & Kechagia, K. (2015). A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy, 78, 550–560.

    Article  Google Scholar 

  • Lee, H. C., & Chang, C. T. (2018). Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan. Renewable and Sustainable Energy Reviews, 92, 883–896.

    Article  Google Scholar 

  • Lehtveer, M., Makowski, M., Hedenus, F., McCollum, D., & Strubegger, M. (2015). Multi-criteria analysis of nuclear power in the global energy system: Assessing trade-offs between simultaneously attainable economic, environmental and social goals. Energy Strategy Reviews, 8, 45–55.

    Article  Google Scholar 

  • Lozano-Minguez, E., Kolios, A. J., & Brennan, F. P. (2011). Multi-criteria assessment of offshore wind turbine support structures. Renewable Energy, 36(11), 2831–2837.

    Article  Google Scholar 

  • Mainali, B., & Silveira, S. (2015). Using a sustainability index to assess energy technologies for rural electrification. Renewable and Sustainable Energy Reviews, 41, 1351–1365.

    Article  Google Scholar 

  • Mohamadabadi, H. S., Tichkowsky, G., & Kumar, A. (2009). Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles. Energy, 34(1), 112–125.

    Article  CAS  Google Scholar 

  • Mohsen, M. S., & Akash, B. A. (1997). Evaluation of domestic solar water heating system in Jordan using analytic hierarchy process. Energy Conversion and Management, 38(18), 1815–1822.

    Article  CAS  Google Scholar 

  • Nuuter, T., Lill, I., & Tupenaite, L. (2015). Comparison of housing market sustainability in European countries based on multiple criteria assessment. Land Use Policy, 42, 642–651.

    Article  Google Scholar 

  • Okello, C., Pindozzi, S., Faugno, S., & Boccia, L. (2014). Appraising bioenergy alternatives in Uganda using strengths, weaknesses, opportunities and threats (SWOT)-analytical hierarchy process (AHP) and a desirability functions approach. Energies, 7(3), 1171–1192.

    Article  Google Scholar 

  • Othman, M. R., Idris, R., Hassim, M. H., & Ibrahim, W. H. W. (2016). Prioritizing HAZOP analysis using analytic hierarchy process (AHP). Clean Technology and Environmental Policy, 18, 1345–1360.

    Article  Google Scholar 

  • Patlitzianas, K. D., Ntotas, K., Doukas, H., & Psarras, J. (2007). Assessing the renewable energy producers’ environment in EU accession member states. Energy Conversion and Management, 48(3), 890–897.

    Article  Google Scholar 

  • Peng, J. (2012). Research on the optimization of green suppliers based on AHP and GRA. Journal of Information and Computational Science, 9(1), 173–182.

    Google Scholar 

  • Perera, A. T. D., Attalage, R. A., Perera, K. K. C. K., & Dassanayake, V. P. C. (2013). A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Applied Energy, 107, 412–425.

    Article  Google Scholar 

  • Peterseim, J. H., White, S., Tadros, A., & Hellwig, U. (2013). Concentrated solar power hybrid plants, which technologies are best suited for hybridisation? Renewable Energy, 57, 520–532.

    Article  Google Scholar 

  • Putrus, P. (1990). Accounting for intangibles in integrated manufacturing (nonfinancial justification based on the analytical hierarchy process). Information Strategy, 6(4), 25–30.

    Google Scholar 

  • Ren, H., Gao, W., Zhou, W., & Nakagami, K. I. (2009). Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan. Energy Policy, 37(12), 5484–5493.

    Article  Google Scholar 

  • Ren, J., & Sovacool, B. K. (2015). Prioritizing low-carbon energy sources to enhance China’s energy security. Energy Conversion and Management, 92, 129–136.

    Article  Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resources allocation. New York: McGraw-Hill.

    Google Scholar 

  • Sánchez-Lozano, J. M., Antunes, C. H., García-Cascales, M. S., & Dias, L. C. (2014). GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renewable Energy, 66, 478–494.

    Article  Google Scholar 

  • San Cristóbal, J. R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: The VIKOR method. Renewable Energy, 36(2), 498–502.

    Article  Google Scholar 

  • Şengül, Ü., Eren, M., Shiraz, S. E., Gezder, V., & Şengül, A. B. (2015). Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy, 75, 617–625.

    Article  Google Scholar 

  • Santoyo-Castelazo, E., & Azapagic, A. (2014). Sustainability assessment of energy systems: Integrating environmental, economic and social aspects. Journal of Cleaner Production, 80, 119–138.

    Article  Google Scholar 

  • Shiue, Y. C., & Lin, C. Y. (2012). Applying analytic network process to evaluate the optimal recycling strategy in upstream of solar energy industry. Energy and Buildings, 54, 266–277.

    Article  Google Scholar 

  • Sindhu, S. P., Nehra, V., & Luthra, S. (2016). Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook. Energy, 100, 332–348.

    Article  Google Scholar 

  • Streimikiene, D., Balezentis, T., Krisciukaitienė, I., & Balezentis, A. (2012). Prioritizing sustainable electricity production technologies: MCDM approach. Renewable and Sustainable Energy Reviews, 16(5), 3302–3311.

    Article  Google Scholar 

  • Troldborg, M., Heslop, S., & Hough, R. L. (2014). Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties. Renewable and Sustainable Energy Reviews, 39, 1173–1184.

    Article  Google Scholar 

  • Uyan, M. (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable and Sustainable Energy Reviews, 28, 11–17.

    Article  Google Scholar 

  • Vafaeipour, M., Zolfani, S. H., Varzandeh, M. H. M., Derakhti, A., & Eshkalag, M. K. (2014). Assessment of regions priority for implementation of solar projects in Iran: New application of a hybrid multi-criteria decision-making approach. Energy Conversion and Management, 86, 653–663.

    Article  Google Scholar 

  • Vučijak, B., Kupusović, T., Midžić-Kurtagić, S., & Ćerić, A. (2013). Applicability of multicriteria decision aid to sustainable hydropower. Applied Energy, 101, 261–267.

    Article  Google Scholar 

  • Wabalickis, R. N. (1988). Justification of FMS with the analytic hierarchy process. Journal of Manufacturing Systems, 7(3), 175–182.

    Article  Google Scholar 

  • Yazdani-Chamzini, A., Fouladgar, M. M., Zavadskas, E. K., & Moini, S. H. H. (2013). Selecting the optimal renewable energy using multi criteria decision making. Journal of Business Economics and Management, 14(5), 957–978.

    Article  Google Scholar 

  • Yazdani, M., Chatterjee, P., Zavadskas, E. K., & Zolfani, S. H. (2017). Integrated QFD-MCDM framework for green supplier selection. Journal of Cleaner Production, 142, 3728–3740.

    Article  Google Scholar 

  • Yeh, T. M., & Huang, Y. L. (2014). Factors in determining wind farm location: Integrating GQM, fuzzy DEMATEL, and ANP. Renewable Energy, 66, 159–169.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Department of Science, Technology and Environment Government of Tripura, and Tripura Renewable Energy Development Agency (TREDA) for their insightful help to collect the data. The authors also would like to thank the anonymous reviewers and the editor for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, C., Bhowmik, S. & Ray, A. Selection of optimum green energy sources by considering environmental constructs and their technical criteria: a case study. Environ Dev Sustain 23, 13890–13918 (2021). https://doi.org/10.1007/s10668-021-01244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01244-z

Keyword

Navigation