Skip to main content

Advertisement

Log in

Integrated assessment of extreme events and hydrological responses of Indo-Nepal Gandak River Basin

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Changes in climate cause significant alterations in morphometric parameters and may lead to hydro-meteorological hazards. In this study, an attempt has been made to identify drainage morphometric characteristics through topographic, geologic and hydrological information to assess the extreme weather events (flood) over the Gandak River Basin (GRB). The standardized precipitation index (SPI) and rainfall anomaly index (RAI) were used for deducing extreme rainfall incidences derived from the Tropical Rainfall Measuring Mission precipitation datasets. An assembled frequency distribution as well as trends in RAI and SPI was calculated to understand the hydro-climatological behaviour of the basin. During the monsoon season, the years 1998, 2007, 2011, 2013 and 2017 witnessed the extreme flood events. The variations in heavy and intense rainfall in short time can be linked to extreme flood events, which leads to channel shifting and modifications, can be deduced from provided asymmetric factors and sinuosity index. The results illustrated that both the monsoonal rainfall and the frequency of extreme rainfall over the basin are increasing, which could be a reason for a high severity and frequency of flood events in the GRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdulkareem, J. H., Sulaiman, W. N. A., Pradhan, B., & Jamil, N. R. (2018). Relationship between design floods and land use land cover (LULC) changes in a tropical complex catchment. Arabian Journal of Geosciences, 11(14), 376. https://doi.org/10.1007/s12517-018-3702-4.

    Article  Google Scholar 

  • Bhalme, H. N., & Mooley, D. A. (1980). Large-scale droughts/floods and monsoon circulation. Monthly Weather Review, 108(8), 1197–1211. https://doi.org/10.1175/1520-0493(1980)108<1197:LSDAMC>2.0.CO;2.

    Article  Google Scholar 

  • Bhatt, D., & Mall, R. K. (2015). Surface water resources, climate change and simulation modeling. Aquatic Procedia, 4, 730–738. https://doi.org/10.1016/j.aqpro.2015.02.094.

    Article  Google Scholar 

  • Bhat, M. S., Alam, A., Ahmad, S., et al. (2019). Flood hazard assessment of upper Jhelum basin using morphometric parameters. Environmental Earth Sciences, 78, 54. https://doi.org/10.1007/s12665-019-8046-1.

    Article  Google Scholar 

  • Chaubey, P. K., Kundu, A., & Mall, R. K. (2019). A geo-spatial inter-relationship with drainage morphometry, landscapes and NDVI in the context of climate change: a case study over the Varuna river basin (India). Spatial Information Research, 27, 627–641. https://doi.org/10.1007/s41324-019-00264-2.

    Article  Google Scholar 

  • Choudhari, P. P., Nigam, G. K., Singh, S. K., & Thakur, S. (2018). Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geology, Ecology, and Landscapes, 2(4), 256–267. https://doi.org/10.1080/24749508.2018.1452482.

    Article  Google Scholar 

  • Clarke, J. I. (1966). Morphometry from maps. Essays in geomorphology, 252, 235–274.

    Google Scholar 

  • Cox, R. T. (1994). Analysis of drainage-basins symmetry as rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from Mississippi Embayment. Geological Society of America Bulletin, 106(5), 571–581. https://doi.org/10.1130/0016-7606(1994)106<0571:AODBSA>2.3.CO;2.

    Article  Google Scholar 

  • Cox, R. T., Van Arsdale, R. B., & Harris, J. B. (2001). Identification of possible Quaternary deformation in the northeastern Mississippi Embayment using quantitative geomorphic analysis of drainage-basin asymmetry. Geological Society of America Bulletin, 113(5), 615–624.

    Article  Google Scholar 

  • CWPRS (2012). Central work and power Research Station. Government of India, Ministry of water resources, Technical Report No. 5015

  • Dahal, P., Shrestha, N. S., Shrestha, M. L., Krakauer, N. Y., Panthi, J., Pradhanang, S. M., et al. (2016). Drought risk assessment in central Nepal: temporal and spatial analysis. Natural Hazards, 80(3), 1913–1932. https://doi.org/10.1007/s11600-018-0121-6.

    Article  Google Scholar 

  • Deo, R. C., Byun, H. R., & Adamowski, J. F. (2015). A real-time flood monitoring index based on daily effective precipitation and its application to brisbane and Lockyer valley flood events. Water, 29, 4075. https://doi.org/10.1007/s11269-015-1046-3.

    Article  Google Scholar 

  • Dey, S., Bhatt, D., Haq, S., & Mall, R. K. (2020). Potential impact of rainfall variability on groundwater resources: a case study in Uttar Pradesh, India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-020-5083-8.

    Article  Google Scholar 

  • Dhanya, V. (2014). Basin asymmetry and associated tectonics: a case study of Achankovil river basin, Kerala. Transactions of the Institute of Indian Geographers, 36, 207–215.

    Google Scholar 

  • Dornkamp, J. C., & King, C. A. M. (1971). Numerical analyses in geomorphology, an introduction (p. 372). New York: St. Martins Press.

    Google Scholar 

  • Dwivedi, G. N., Sharma, S. K., Prasad, S., & Rai, R. P. (1997). Quaternary geology and geomorphology of a part of Ghaghara-Rapti-Gandak sub-basins of Indogangetic Plain, Uttar Pradesh. Journal of the Geological Society of India, 49(2), 193–202.

    Google Scholar 

  • Edon, M., & Singh, S. K. (2019). Quantitative estimation of soil erosion using open access earth observation data sets and Erosion Potential Model. Water Conservation Science and Engineering. https://doi.org/10.1007/s41101-019-00078-1.

    Article  Google Scholar 

  • Faniran, A. (1968). The index of drainage intensity—a provisional new drainage factor. Australian Journal of Science, 31, 328–330.

    Google Scholar 

  • GFCC (2018). Ganga Flood Control Commission (GFCC): Annual report 2017–18. Government of India Ministry of Water Resources, River Development & Ganga Rejuvenation Ganga Flood Control Commission, Patna. https://gfcc.bih.nic.in/Docs/GFCC-AR-2017-18-EN.pdf. Accessed 14 January 2020

  • Gravelius, H. (1914). Flusskunde. GoschenVerlagshandlung berlin. In Zavoianu I (Ed.), 1985. Morphometry of drainage basins. Amsterdam: Elsevier.

  • Gupta, M., Srivastava, P. K., Islam, T., & Ishak, A. M. B. (2013). Evaluation of TRMM rainfall for soil moisture prediction in a subtropical climate. Environmental Earth Sciences. https://doi.org/10.1007/s12665-013-2837-6.

    Article  Google Scholar 

  • Hare, P.W., & Gardner, T.W. (1984). Geomorphic indicators of vertical neo-tectonism along converging plate margins, Nicoya Peninsula, Costa Rica. In M. Morisawa & J. T. Hack (Eds.), Proceedings of 15th geomorphology symposium on tectonic geomorphology (pp. 76–104). Birmingham, Allen &Unwinr, Boston.

  • Hirsch, R. M., Alexander, R. B., & Smith, R. A. (1991). Selection of methods for the detection and estimation of trends in water quality. Water Resources Research, 27, 803–813.

    Article  Google Scholar 

  • Horton, R. E. (1932). Drainage-basin characteristics. Eos, Transactions American Geophysical Union, 13(1), 350–361. https://doi.org/10.1029/TR013i001p00350.

    Article  Google Scholar 

  • Horton, R. E. (1945). Erosional development of streams and their drainage basins hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America, 56(3), 275–370. https://doi.org/10.1177/030913339501900406.

    Article  Google Scholar 

  • Howard, A. D. (1967). Drainage analysis in geologic interpretation: a summation. AAPG bulletin, 51, 2246–2259.

    Google Scholar 

  • Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of hydrometeorology, 8(1), 38–55.

    Article  Google Scholar 

  • IIT Kanpur (2018). Interfan area. Geology. https://www.iitk.ac.in/gangetic. Accessed 20 June 2018.

  • Kendall, M. G. (1962). Rank correlation methods. Journal of American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934.

    Article  Google Scholar 

  • Kumar, N., Singh, S. K., & Pandey, H. K. (2018). Drainage morphometric analysis using open access earth observation datasets in a drought-affected part of Bundelkhand, India. Applied Geomatics, 10(3), 173–189. https://doi.org/10.1007/s12518-018-0218-2.

    Article  Google Scholar 

  • Malik, S., Pal, S. C., Sattar, A., Singh, S. K., Das, B., Chakrabortty, R., et al. (2020). Trend of extreme rainfall events using suitable global circulation model to combat the water logging condition in Kolkata metropolitan area. Urban Climate. https://doi.org/10.1016/j.uclim.2020.100599.

    Article  Google Scholar 

  • Mall, R. K. (2013). Climate change and water security: an Indian perspective. Signatures, Newsletter of the ISRS-AC, 25, 119–133.

    Google Scholar 

  • Mall, R. K., & Srivastava, R. K. (2012). Sustainable flood management in changing climate. In O. P. Mishra, M. Ghatak, & A. Kamal (Eds.), Flood risk management in South Asia (pp. 49–66). New Delhi: SAARC Disaster Management Centre.

    Google Scholar 

  • Mall, R.K., Gupta, A., Singh, R., Singh, R.S. & Rathore, L.S. (2006). Water resources and climate change: an Indian perspective. Current science, pp. 1610–1626.

  • Mall, R. K., Attri, S. D., & Kumar, S. (2011a). Extreme weather events and climate change policy in India. Journal of South Asian Studies, 4, 27–76.

    Google Scholar 

  • Mall, R. K., Kumar, R., & Bhatla, R. (2011b). Climate change and disaster in India. Journal of South Asian Disaster Studies, 4(1), 27–76.

    Google Scholar 

  • Mall, R. K., Srivastava, R. K., Banerjee, T., Mishra, O. P., Bhatt, D., & Sonkar, G. (2019). Disaster risk reduction including climate change adaptation over south Asia: challenges and ways forward. International Journal of Disaster Risk Science, 10, 14–27. https://doi.org/10.1007/s13753-018-0210-9.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259.

    Article  Google Scholar 

  • Maurya, S., Srivastava, P. K., & Gupta, M. (2016). Integrating soil hydraulic parameter and microwave precipitation with morphometric analysis for watershed prioritization. Water Resources Management, 30, 5385. https://doi.org/10.1007/s11269-016-1494-4.

    Article  Google Scholar 

  • McKee, T. B., Doesken, N. J. & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th conference on applied climatology, 17(22), 179–183.

  • Meshram, S. G., Singh, S. K., Meshram, C., Deo, R. C., & Ambade, B. (2018). Statistical evaluation of rainfall time series in concurrence with agriculture and water resources of Ken River Basin, Central India (1901–2010). Theoretical and Applied Climatology, 134(3–4), 1231–1243. https://doi.org/10.1007/s00704-017-2335-y.

    Article  Google Scholar 

  • Miller, V. C. (1953). A quantitative geomorphic study of drainage basin characteristics in the clinch mountain area. Virginia and Tennessee. In Technical report. 3. Office of naval research. New York: Department of Geology, Columbia University, Geography Branch, 1960.

  • Mohindra, R., Parkash, B., & Prasad, J. (1992). Historical geomorphology and pedology of the Gandakmegafan, middle Gangetic Plains, India. Earth Surface Processes and Landforms, 17(7), 643–662. https://doi.org/10.1002/esp.3290170702.

    Article  CAS  Google Scholar 

  • Molin, P., Pazzaglia, F. J., & Dramis, F. (2004). Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila massif, Calabria, southern Italy. American Journal of Science, 304(7), 559–589. https://doi.org/10.2475/ajs.304.7.559.

    Article  Google Scholar 

  • Muller, J. E. (1968a). An introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers, 58(2), 371–385.

    Article  Google Scholar 

  • Muller, J. E. (1968). An introduction to the hydraulic and topographic sinuosity indexes. Annals of the Association of American Geographers, 58(2), 371–385. https://doi.org/10.1111/j.1467-8306.1968.tb00650.x.

    Article  Google Scholar 

  • Nagalapalli, S., Kundu, A., Mall, R. K., Thattai, D., & Rangarajan, S. (2019). An appraisal of flood events using IMD, CRU, and CCSM4-derived meteorological data sets over the Vaigai river basin, Tamil Nadu (India). Sustainable Water Resources Management, 5, 1731–1744. https://doi.org/10.1007/s40899-019-00325-2.

    Article  Google Scholar 

  • Panthi, J., Dahal, P., Shrestha, M. L., Aryal, S., Krakauer, N. Y., Pradhanang, S. M., et al. (2015). Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate, 3(1), 210–226. https://doi.org/10.3390/cli3010210.

    Article  Google Scholar 

  • Patel, D. P., Gajjar, C. A., & Srivastava, P. K. (2013). Prioritization of Malesari mini-watersheds through morphometric analysis: a remote sensing and GIS perspective. Environmental Earth Sciences, 69, 2643. https://doi.org/10.1007/s12665-012-2086-0.

    Article  Google Scholar 

  • Pophare, A. M., & Balpande, U. S. (2014). Morphometric analysis of Suketi river basin, Himachal Himalaya, India. Journal of Earth System Science, 123(7), 1501–1515. https://doi.org/10.1007/s12040-014-0487-z.

    Article  Google Scholar 

  • Pradhan, R. K., Srivastava, P. K., Maurya, S., Singh, S. K., & Patel, D. P. (2018). Integrated framework for soil and water conservation in Kosi River Basin through soil hydraulic parameters, morphometric analysis and earth observation dataset. Geocarto International. https://doi.org/10.1080/10106049.2018.1520921.

    Article  Google Scholar 

  • Rajeevan, M., Bhate, J., & Jaswal, A. K. (2008). Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research Letters. https://doi.org/10.1029/2008GL035143.

    Article  Google Scholar 

  • Rawat, K. S., Singh, S. K., Singh, M. I., & Garg, B. L. (2018). Comparative evaluation of vertical accuracy of elevated points with ground control points from ASTERDEM and SRTMDEM with respect to CARTOSAT-1DEM. Remote Sensing Applications: Society and Environment, 13, 289–297. https://doi.org/10.1016/j.rsase.2018.11.005.

    Article  Google Scholar 

  • Roorkee, N. I. H. (2017). Gandakriver. https://nihroorkee.gov.in/Gangakosh/tributaries/Gandak.htm. Accessed 20 June 2017.

  • Schumm, S. A. (1956). Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67(5), 597–646. https://doi.org/10.1130/0016-7606.

    Article  Google Scholar 

  • Seiler, R. A., Hayes, M., & Bressan, L. (2002). Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology, 22(11), 1365–1376. https://doi.org/10.1002/joc.799.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.2307/2285891.

    Article  Google Scholar 

  • Shukla, D. P., Dubey, C. S., Ningreichon, A. S., Singh, R. P., Mishra, B. K., & Singh, S. K. (2014). GIS-based morpho-tectonic studies of Alaknanda river basin: a precursor for hazard zonation. Natural Hazards, 71, 1433. https://doi.org/10.1007/s11069-013-0953-y.

    Article  Google Scholar 

  • Sicard, P., Dalstein-Richier, L., & Vas, N. (2011). Annual and seasonal trends of ambient ozone concentration and its impact on forest vegetation in Mercantour National Park (South-eastern France) over the 2000–2008 period. Environmental Pollution, 159(2), 351–362.

    Article  CAS  Google Scholar 

  • Sigdel, M., & Ikeda, M. (2010). Spatial and temporal analysis of drought in Nepal using standardized precipitation index and its relationship with climate indices. Journal of Hydrology and Meteorology, 7(1), 59–74.

    Article  Google Scholar 

  • Singh, R. B., & Mal, S. (2014). Trends and variability of monsoon and other rainfall seasons in Western Himalaya, India. Atmospheric Science Letters, 15(3), 218–226. https://doi.org/10.1002/asl2.494.

    Article  Google Scholar 

  • Singh, S. K., Basommi, B. P., Mustak, S. K., Srivastava, P. K., & Szabo, S. (2018). Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto International, 33(11), 1202–1222. https://doi.org/10.1080/10106049.2017.1343390.

    Article  Google Scholar 

  • Singh, V. K., Kumar, D., Kashyap, P. S., Singh, P. K., Kumar, A., & Singh, S. K. (2020). Modelling of soil permeability using different data driven algorithms based on physical properties of soil. Journal of Hydrology, 580, 124223. https://doi.org/10.1016/j.jhydrol.2019.124223.

    Article  Google Scholar 

  • Sinha, R., Tandon, S. K., Gibling, M. R., Bhattacharjee, P. S., & Dasgupta, A. S. (2005). Late quaternary geology and alluvial stratigraphy of the Ganga basin. Himalayan Geology, 26(1), 223–240.

    Google Scholar 

  • Smith, K. G. (1950). Standards for grading texture of erosional topography. American Journal of Science, 248(9), 655–668.

    Article  Google Scholar 

  • Sreedevi, P. D., Subrahmanyam, K., & Ahmed, S. (2005). Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Cuddapah District, Andhra Pradesh, India. Hydrogeology Journal, 13(3), 534–543. https://doi.org/10.1007/s10040-004-0375-8.

    Article  CAS  Google Scholar 

  • Stankevich, S., Piestova, I., Kozlova, A., Titarenko, O., & Singh, S. K. (2020). Satellite radar interferometry processing and elevation change analysis for geo-environmental hazard assessment. In P. K. Srivastava, S. K. Singh, U. C. Mohanty, & T. Mutry (Eds.), Techniques for disaster risk management and mitigation (geophysical monograph series). USA: Wiley.

    Google Scholar 

  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117–1142.

    Article  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913–920.

    Article  Google Scholar 

  • Strahler, A. N. (1964). Quantitative geomorphology of drainage basins and channel networks. Handbook of applied hydrology (pp. 4–39). New York: McGraw-Hill.

    Google Scholar 

  • Szabó, G., Singh, S. K., & Szabó, S. (2015). Slope angle and aspect as influencing factors on the accuracy of the SRTM and the ASTER GDEM databases. Physics and Chemistry of the Earth, Parts A/B/C, 83–84, 137–145. https://doi.org/10.1016/j.pce.2015.06.003.

    Article  Google Scholar 

  • Van Rooy, M. P. (1965). A rainfall anomaly index independent of time and space. Notos, 14(43), 6.

    Google Scholar 

  • Verstappen, H. T. (1983). Applied geomorphology. Geomorphological Surveys for environmental development No. 551.4 VER. Progress in Physical Geography Earth and Environment. https://doi.org/10.1177/030913338500900125.

    Article  Google Scholar 

  • Yadav, S. K., Singh, S. K., Gupta, M., & Srivastava, P. K. (2014). Morphometric analysis of upper tons basin from Northern Foreland of Peninsular India using CARTOSAT satellite and GIS. Geocarto International, 29(8), 895–914. https://doi.org/10.1080/10106049.2013.868043.

    Article  Google Scholar 

  • Yadav, S. K., Dubey, A., Szilard, S., & Singh, S. K. (2016). Prioritisation of sub-watersheds based on earth observation data of agricultural dominated northern river basin of India. Geocarto International, 33(4), 339–356. https://doi.org/10.1080/10106049.2016.1265592.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to CGIR-CSI for providing SRTM based Digital Elevation Model used in study. We also acknowledge NASA-JAXA (TRMM) for providing rainfall datasets used in the study. Authors are grateful to the DST-Mahamana Centre of Excellence in Climate Change Research funded by Department of Science and Technology, New Delhi, Climate Change Programme for providing scientific and technical support.

Funding

Authors thank the Climate Change Programme, Department of Science and Technology, New Delhi, for financial support (DST/CCP/CoE/80/2017(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mall.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaubey, P.K., Srivastava, P.K., Gupta, A. et al. Integrated assessment of extreme events and hydrological responses of Indo-Nepal Gandak River Basin. Environ Dev Sustain 23, 8643–8668 (2021). https://doi.org/10.1007/s10668-020-00986-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00986-6

Keywords

Navigation