Skip to main content

Advertisement

Log in

A conceptual framework to assess ecological quality of urban green space: a case study in Mashhad city, Iran

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This study evaluates the green space ecological quality with regard to its spatial properties. It investigates how the spatial properties of green space patches affect ecological aspects of municipal green spaces of Mashhad in Iran. The importance and necessity of this investigation is to develop a concept to evaluate the quality of urban green patches based on the perspective and method of landscape ecology. In accordance with our objectives, the quality concept is defined by quantitative (size, area, density) and qualitative (shape, complexity, connectivity) factors as referred to spatial configuration and composition of landscape structure. However, to have a better understanding of the quality concept, we explored the relationship between landscape variables and ecological quality by spatial analysis and correlation tests. We (1) drew the urban green space map by images processing, (2) quantified landscape metrics for the green space patches, (3) analyzed and represented the metric value spatially, (4) calculated ecological quality and drew the grade map, (5) measured the Pearson correlation coefficients and linear regression between ecological quality and each landscape metric. Results of this study provided the evidence to study ecological quality by integrating metrics map and analyzing spatial heterogeneity in Mashhad city. Results showed that the extent and continuity of the green spaces were too low to effectively support some key ecological services. Additionally, the Pearson’s correlation coefficients and linear regression revealed strong relationships between ecological quality and most landscape metrics except LSI. Although it was expected that the qualitative variables of green space had higher influence on the ecological quality, quantitative variables had the highest effect due to the origin and nature of the green patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Authors

Fig. 2

Source: Authors

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acar, C., Kurdoglu, B. C., Kurdoglu, O., & Acar, H. (2006). Public preferences for visual quality and management in the Kackar Mountains National Park (Turkey). International Journal of Sustainable Development and World Ecology, 13(6), 499–512.

    Article  Google Scholar 

  • Ahern, J. (2013). Urban landscape sustainability and resilience: The promise and challenges of integrating ecology with urban planning and design. Landscape Ecology, 28(6), 1203–1212.

    Article  Google Scholar 

  • Alberti, M. (2005). The effects of urban patterns on ecosystem function. International Regional Science Review, 28(2), 168–192. https://doi.org/10.1177/0160017605275160.

    Article  Google Scholar 

  • Alberti, M., Marzluff, J. M., Shulenberger, E., Bradley, G., Ryan, C., & Zumbrunnen, C. (2003). Integrating humans into ecology: Opportunities and challenges for studying urban ecosystems. BioScience, 53(12), 1169–1179.

    Article  Google Scholar 

  • Aylor, D. (1972). Noise reduction by vegetation and ground. The Journal of the Acoustical Society of America, 51(1B), 197–205.

    Article  Google Scholar 

  • Baschak, L. A., & Brown, R. D. (1995). An ecological framework for the planning, design and management of urban river greenways. Landscape and Urban Planning, 33(1), 211–225.

    Article  Google Scholar 

  • Borrelli, P., Rondón, L. A. S., & Schütt, B. (2013). The use of Landsat imagery to assess large-scale forest cover changes in space and time, minimizing false-positive changes. Applied Geography, 41, 147–157.

    Article  Google Scholar 

  • Bulut, Z., & Yilmaz, H. (2008). Determination of landscape beauties through visual quality assessment method: A case study for Kemaliye (Erzincan/Turkey). Environmental Monitoring and Assessment, 141(1–3), 121–129.

    Article  Google Scholar 

  • Cadenasso, M. L., Pickett, S. T. A., & Grove, J. M. (2006). Dimensions of ecosystem complexity: Heterogeneity, connectivity, and history. Ecological Complexity, 3, 1–12. https://doi.org/10.1016/j.ecocom.2005.07.002.

    Article  Google Scholar 

  • Chen, B., Adimo, O. A., & Bao, Z. (2009). Assessment of aesthetic quality and multiple functions of urban green space from the users’ perspective: The case of Hangzhou Flower Garden, China. Landscape and Urban Planning, 93(1), 76–82.

    Article  Google Scholar 

  • Chen, Y., Yu, J., & Khan, S. (2010). Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation. Environmental Modelling and Software, 25(12), 1582–1591.

    Article  Google Scholar 

  • Chen, X.-L., Zhao, H.-M., Li, P.-X., & Yin, Z.-Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146.

    Article  Google Scholar 

  • Chiesura, A. (2004). The role of urban parks for the sustainable city. Landscape and Urban Planning, 68(1), 129–138.

    Article  Google Scholar 

  • Costanza, R., Arge, R., Groot, R. De, Farberk, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’ s ecosystem services and natural capital. Nature, 387(May), 253–260. https://doi.org/10.1038/387253a0.

    Article  CAS  Google Scholar 

  • Costanza, R., & Daly, H. (2003). Natural capital and sustainable development. Conservation Biology, 6(1), 37–46. https://doi.org/10.1046/j.1523-1739.1992.610037.x/pdf.

    Article  Google Scholar 

  • De Groot, R. S., Wilson, M. A., & Boumans, R. M. J. (2002). A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics, 41(3), 393–408. https://doi.org/10.1016/S0921-8009(02)00089-7.

    Article  Google Scholar 

  • De Vries, S., Verheij, R. A., Groenewegen, P. P., & Spreeuwenberg, P. (2003). Natural environments—healthy environments? An exploratory analysis of the relationship between greenspace and health. Environment and Planning A, 35(10), 1717–1731.

    Article  Google Scholar 

  • del Castillo, E. M., García-Martin, A., Aladrén, L. A. L., & de Luis, M. (2015). Evaluation of forest cover change using remote sensing techniques and landscape metrics in Moncayo Natural Park (Spain). Applied Geography, 62, 247–255.

    Article  Google Scholar 

  • Duany, A. (2011). Garden cities: Theory & practice of agrarian urbanism. London: The Prince’s Foundation for the Built Environment.

    Google Scholar 

  • Dunning, J. B., Stewart, D. J., Danielson, B. J., Noon, B. R., Root, T. L., & Stevens, E. E. (1995). Spatially explicit population models: Current forms and future uses. Ecological Applications, 5(1), 3–11.

    Article  Google Scholar 

  • Engen, S., Lande, R., & Bernt-Erik, S. (2002). Migration and spatiotemporal variation in population dynamics in a heterogeneous environment. Ecology, 83(2), 570–579.

    Article  Google Scholar 

  • Escobedo, F. J., & Nowak, D. J. (2009). Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning, 90(3), 102–110.

    Article  Google Scholar 

  • Fan, C., & Myint, S. (2014). A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landscape and Urban Planning, 121, 117–128. https://doi.org/10.1016/j.landurbplan.2013.10.002.

    Article  Google Scholar 

  • Fang, C.-F., & Ling, D.-L. (2003). Investigation of the noise reduction provided by tree belts. Landscape and Urban Planning, 63(4), 187–195.

    Article  Google Scholar 

  • Forman, R. T. T. (1995). Land mosaics: The ecology of landscapes and regions. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Forman, R. T. T., & Godron, M. (1986). Landscape ecology. New York: Wiley.

    Google Scholar 

  • Gómez, F., Gil, L., & Jabaloyes, J. (2004). Experimental investigation on the thermal comfort in the city: Relationship with the green areas, interaction with the urban microclimate. Building and Environment, 39(9), 1077–1086.

    Article  Google Scholar 

  • Gómez-Baggethun, E., & Barton, D. N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235–245. https://doi.org/10.1016/j.ecolecon.2012.08.019.

    Article  Google Scholar 

  • Grove, J. M., Troy, A. R., O’Neil-Dunne, J. P. M., Burch, W. R., Jr., Cadenasso, M. L., & Pickett, S. T. A. (2006). Characterization of households and its implications for the vegetation of urban ecosystems. Ecosystems, 9(4), 578–597.

    Article  Google Scholar 

  • Gustafson, E. J. (1998). Quantifying landscape spatial pattern: What is the State of the Art. Ecosystems, 1(2), 143–156.

    Article  Google Scholar 

  • Gustafson, E. J., & Parker, G. R. (1992). Relationships between landcover proportion and indices of landscape spatial pattern. Landscape Ecology, 7(2), 101–110.

    Article  Google Scholar 

  • Haq, S. M. A. (2011). Urban green spaces and an integrative approach to sustainable environment. Journal of Environmental Protection, 2(5), 601–608. https://doi.org/10.4236/jep.2011.25069.

    Article  Google Scholar 

  • Hestmark, G. (2000). Temptations of the tree. Nature, 408(6815), 911.

    Article  CAS  Google Scholar 

  • Hope, D., Gries, C., Zhu, W., Fagan, W. F., Redman, C. L., Grimm, N. B., et al. (2003). Socioeconomics drive urban plant diversity. Proceedings of the National Academy of Sciences, 100(15), 8788–8792.

    Article  CAS  Google Scholar 

  • Jim, C. Y. (2001). Managing urban trees and their soil envelopes in a contiguously developed city environment. Environmental Management, 28(6), 819–832.

    Article  CAS  Google Scholar 

  • Jim, C. Y. (2013). Assessing the landscape and ecological quality of urban green spaces in a compact city. Landscape and Urban Planning. https://doi.org/10.1016/j.landurbplan.2013.10.001.

    Article  Google Scholar 

  • Johst, K., Drechsler, M., Mewes, M., Sturm, A., & Wätzold, F. (2015). A novel modeling approach to evaluate the ecological effects of timing and location of grassland conservation measures. Biological Conservation, 182, 44–52.

    Article  Google Scholar 

  • Kong, F., Yin, H., & Nakagoshi, N. (2007). Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China. Landscape and Urban Planning, 79(3), 240–252.

    Article  Google Scholar 

  • Kong, F., Yin, H., Nakagoshi, N., & Zong, Y. (2010). Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landscape and Urban Planning, 95(1–2), 16–27. https://doi.org/10.1016/j.landurbplan.2009.11.001.

    Article  Google Scholar 

  • Kordi, M., & Brandt, S. A. (2012). Effects of increasing fuzziness on analytic hierarchy process for spatial multicriteria decision analysis. Computers, Environment and Urban Systems, 36(1), 43–53.

    Article  Google Scholar 

  • Lee, S.-H., Lee, K.-S., Jin, W.-C., & Song, H.-K. (2009). Effect of an urban park on air temperature differences in a central business district area. Landscape and Ecological Engineering, 5(2), 183–191. https://doi.org/10.1007/s11355-009-0067-6.

    Article  Google Scholar 

  • Leitao, Â. B., & Ahern, J. (2002). Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning, 59, 65–93.

    Article  Google Scholar 

  • Li, H., Chen, W., & He, W. (2015). Planning of green space ecological network in urban areas: An example of Nanchang, China. Journal of Environ Research and Public Health, 12(10), 12889–12904. https://doi.org/10.3390/ijerph121012889.

    Article  Google Scholar 

  • Li, X., He, H., Bu, R., Wen, Q., Chang, Y., Hu, Y., et al. (2005). The adequacy of different landscape metrics for various landscape patterns. Pattern Recognition, 38(12), 2626–2638. https://doi.org/10.1016/j.patcog.2005.05.009.

    Article  Google Scholar 

  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., & Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115(12), 3249–3263. https://doi.org/10.1016/j.rse.2011.07.008.

    Article  Google Scholar 

  • Li, H., & Wu, J. (2004). Use and misuse of landscape indices. Landscape Ecology, 19, 389–399.

    Article  Google Scholar 

  • Liu, H., & Shen, Y. (2014). The impact of green space changes on air pollution and microclimates: A case study of the Taipei metropolitan area. Sustainability, 6, 8827–8855. https://doi.org/10.3390/su6128827.

    Article  Google Scholar 

  • Liu, H., & Weng, Q. (2008). Seasonal variations in the relationship between landscape pattern and land surface temperature in Indianapolis, USA. Environmental Monitoring and Assessment, 144(1–3), 199–219. https://doi.org/10.1007/s10661-007-9979-5.

    Article  Google Scholar 

  • Liu, L., & Zhang, Y. (2011). Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sensing, 3(7), 1535–1552.

    Article  Google Scholar 

  • Maas, J., Verheij, R. A., Groenewegen, P. P., De Vries, S., & Spreeuwenberg, P. (2006). Green space, urbanity, and health: How strong is the relation? Journal of Epidemiology and Community Health, 60(7), 587–592.

    Article  Google Scholar 

  • Maimaitiyiming, M., Ghulam, A., Tiyip, T., Pla, F., Latorre-carmona, P., Halik, Ü., et al. (2014). Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS Journal of Photogrammetry and Remote Sensing, 89, 59–66. https://doi.org/10.1016/j.isprsjprs.2013.12.010.

    Article  Google Scholar 

  • Martin, C. A., Warren, P. S., & Kinzig, A. P. (2004). Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landscape and Urban Planning, 69(4), 355–368.

    Article  Google Scholar 

  • McDonald, A. G., Bealey, W. J., Fowler, D., Dragosits, U., Skiba, U., Smith, R. I., et al. (2007). Quantifying the effect of urban tree planting on concentrations and depositions of PM 10 in two UK conurbations. Atmospheric Environment, 41(38), 8455–8467.

    Article  CAS  Google Scholar 

  • McGarigal, K. (2002). Landscape pattern metrics. In A. H. El-Shaarawi & W. W. Piegorsch (Eds.), Encyclopedia of environmentrics (Vol. 2, pp. 1135–1142). New York: Wiley. https://doi.org/10.1002/9780470057339.val006/full.

    Chapter  Google Scholar 

  • McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). FRAGSTATS: Spatial pattern analysis program for categorical maps. Comp. software prog. Univ. Mass., Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. Accessed 14 Mar 2015.

  • McGarigal, K., & Marks, B. J. (1995). Spatial pattern analysis program for quantifying landscape structure. General Technical Report. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station.

  • Miller, W., Collins, M. G., Steiner, F. R., & Cook, E. (1998). An approach for greenway suitability analysis. Landscape and Urban Planning, 42(2), 91–105.

    Article  Google Scholar 

  • Mitchell, R., & Popham, F. (2008). Effect of exposure to natural environment on health inequalities: An observational population study. The Lancet, 372(9650), 1655–1660.

    Article  Google Scholar 

  • Morancho, A. B. (2003). A hedonic valuation of urban green areas. Landscape and Urban Planning, 66(1), 35–41.

    Article  Google Scholar 

  • Mosadeghi, R., Warnken, J., Tomlinson, R., & Mirfenderesk, H. (2015). Computers, environment and urban systems comparison of Fuzzy-AHP and AHP in a spatial multi-criteria decision making model for urban land-use planning. Computers, Environment and Urban Systems, 49, 54–65. https://doi.org/10.1016/j.compenvurbsys.2014.10.001.

    Article  Google Scholar 

  • Municipality of Mashhad. (2014). Master plan of Mashahd development. Iran: Ministry of Housing and Urban Development (in Persian).

    Google Scholar 

  • Nilsson, K., Nielsen, T. S., Aalbers, C., Bell, S., Boitier, B., Chery, J. P., et al. (2014). Strategies for sustainable urban development and urban-rural linkages. European Journal of Spatial Development, 4, 25.

    Google Scholar 

  • Nowak, D. J., Crane, D. E., & Stevens, J. C. (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4(3), 115–123.

    Article  Google Scholar 

  • Onishi, A., Cao, X., Ito, T., Shi, F., & Imura, H. (2010). Evaluating the potential for urban heat-island mitigation by greening parking lots. Urban Forestry & Urban Greening, 9(4), 323–332. https://doi.org/10.1016/j.ufug.2010.06.002.

    Article  Google Scholar 

  • Peng, Y., Mi, K., Qing, F., & Xue, D. (2016). Identification of the main factors determining landscape metrics in semi-arid agro-pastoral ecotone. Journal of Arid Environments, 124, 249–256.

    Article  Google Scholar 

  • Pickett, S. T. A., & Cadenasso, M. L. (2006). Advancing urban ecological studies: Frameworks, concepts, and results from the Baltimore Ecosystem Study. Austral Ecology, 31, 114–125. https://doi.org/10.1111/j.1442-9993.2006.01586.x.

    Article  Google Scholar 

  • Pickett, S. T. A., & Rogers, K. H. (1997). Patch dynamics: The transformation of landscape structure and function. In J. A. Bissonette (Ed.), Wildlife and landscape ecology effects of pattern and scale (pp. 101–127). Berlin: Springer.

    Chapter  Google Scholar 

  • Pinfield, G. (1992). Strategic environmental assessment and land-use planning. Project Appraisal, 7(3), 157–164.

    Article  Google Scholar 

  • Rafiee, R., Salman, A., Khorasani, N., & Asghar, A. (2009a). Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities, 26(1), 19–26. https://doi.org/10.1016/j.cities.2008.11.005.

    Article  Google Scholar 

  • Rafiee, R., Salman Mahiny, A., & Khorasani, N. (2009b). Assessment of changes in urban green spaces of Mashad city using satellite data. International Journal of Applied Earth Observation and Geoinformation, 11(6), 431–438. https://doi.org/10.1016/j.jag.2009.08.005.

    Article  Google Scholar 

  • Riitters, K. H., O’Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H., Timmins, S. P., et al. (1995). A factor analysis of landscape pattern and structure metrics. Landscape Ecology, 10(1), 23–39. https://doi.org/10.1007/BF00158551.

    Article  Google Scholar 

  • Riitters, K., Vogt, P., Soille, P., & Estreguil, C. (2009). Landscape patterns from mathematical morphology on maps with contagion. Landscape Ecology, 24(5), 699–709. https://doi.org/10.1007/s10980-009-9344-x.

    Article  Google Scholar 

  • Rijsberman, M. A., & Van De Ven, F. H. M. (2000). Different approaches to assessment of design and management of sustainable urban water systems. Environmental Impact Assessment Review, 20(3), 333–345.

    Article  Google Scholar 

  • Rostami, R., Lamit, H., Khoshnava, S. M., Rostami, R., Solehin, M., & Rosley, F. (2015). Sustainable cities and the contribution of historical urban green spaces: A case study of historical Persian Gardens. Sustainability, 7, 13290–13316. https://doi.org/10.3390/su71013290.

    Article  Google Scholar 

  • Saaty, T. L. (1990). How to make a decision: The Analytic Hierarchy Process. European Juornal of Operational Resaerch, 48, 9–26.

    Article  Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International journal of services sciences, 1(1), 83–98.

    Article  Google Scholar 

  • Saaty, T. L., & Vargas, L. G. (2012). Models, methods, concepts & applications of the analytic hierarchy process (Vol. 175). Berlin: Springer.

    Book  Google Scholar 

  • Saura, S. (2004). Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices. Landscape Ecology, 19(2), 197–209.

    Article  Google Scholar 

  • SDSN Thematic Group. (2015). Promoting sustainable urban development in Europe-Achievements and Opportunities. http://www.unsdsn.org, http://www.post2015hlp.org/, and http://www.globalcompact.org. Accessed 12 Jan 2016.

  • Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference (pp. 517–524).

  • Takano, T., Nakamura, K., & Watanabe, M. (2002). Urban residential environments and senior citizens’ longevity in megacity areas: The importance of walkable green spaces. Journal of Epidemiology and Community Health, 56(12), 913–918.

    Article  CAS  Google Scholar 

  • Tian, G. (2002). Urban functional structure characteristics and transformation in China. Cities, 19(4), 243–248. https://doi.org/10.1016/S0264-2751(02)00021-5.

    Article  Google Scholar 

  • Tian, Z., Cao, G., Shi, J., McCallum, I., Cui, L., Fan, D., et al. (2012). Urban transformation of a metropolis and its environmental impacts. Environmental Science and Pollution Research, 19(5), 1364–1374.

    Article  Google Scholar 

  • Tian, Y., Jim, C. Y., Tao, Y., & Shi, T. (2011). Landscape ecological assessment of green space fragmentation in Hong Kong. Urban Forestry & Urban Greening, 10(2), 79–86. https://doi.org/10.1016/j.ufug.2010.11.002.

    Article  Google Scholar 

  • Tian, Y., Jim, C. Y., & Wang, H. (2014). Assessing the landscape and ecological quality of urban green spaces in a compact city. Landscape and Urban Planning, 121, 97–108. https://doi.org/10.1016/j.landurbplan.2013.10.001.

    Article  Google Scholar 

  • Troy, A. R., Grove, J. M., O’Neil-Dunne, J. P. M., Pickett, S. T. A., & Cadenasso, M. L. (2007). Predicting opportunities for greening and patterns of vegetation on private urban lands. Environmental Management, 40(3), 394–412.

    Article  Google Scholar 

  • Turner, M. G. (1990). Spatial and temporal analysis of landscape patterns. Landscape Ecology, 4(I), 21–30.

    Article  Google Scholar 

  • Turner, M. G., & Romme, W. H. (1994). Landscape dynamics in crown fire ecosystems. Landscape Ecology, 9(1), 59–77.

    Article  Google Scholar 

  • Tyrväinen, L., & Miettinen, A. (2000). Property prices and urban forest amenities. Journal of Environmental Economics and Management, 39(2), 205–223.

    Article  Google Scholar 

  • United Nations. (2014). World urbanization prospects: The 2014 revision. New York.

  • United Nations Human Settlements. (2009). Global Report on Human Settlements 2009: Planning Sustainable Cities. London, Sterling, VA: UN-Habitat. https://unhabitat.org/books/global-report-on-human-settlements-2009-planning-sustainable-cities/. Accessed 8 Feb 2016.

  • Uuemaa, E., Mander, Ü., & Marja, R. (2013). Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecological Indicators, 28, 100–106. https://doi.org/10.1016/j.ecolind.2012.07.018.

    Article  Google Scholar 

  • Uuemaa, E., Roosaare, J., Oja, T., & Mander, Ü. (2011). Analysing the spatial structure of the Estonian landscapes: which landscape metrics are the most suitable for comparing different landscapes? Estonian Journal of Ecology, 60(1), 70. https://doi.org/10.3176/eco.2011.1.06.

    Article  Google Scholar 

  • Uy, P. D., & Nakagoshi, N. (2008). Application of land suitability analysis and landscape ecology to urban greenspace planning in Hanoi, Vietnam. Urban Forestry & Urban Greening, 7(1), 25–40.

    Article  Google Scholar 

  • Van Renterghem, T., Botteldooren, D., & Verheyen, K. (2012). Road traffic noise shielding by vegetation belts of limited depth. Journal of Sound and Vibration, 331(10), 2404–2425.

    Article  Google Scholar 

  • Wagner, H. E. H. W., & Fortin, M.-J. (2005). Spatial analysis of landscapes: Concepts and statistics. Ecology, 86(8), 1975–1987.

    Article  Google Scholar 

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483.

    Article  Google Scholar 

  • Wiens, J. A. (1989). Spatial scaling in ecology. Functional Ecology, 3(4), 385–397.

    Article  Google Scholar 

  • Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Landscape and urban planning urban green space, public health, and environmental justice: The challenge of making cities “just green enough”. Landscape and Urban Planning, 125, 234–244. https://doi.org/10.1016/j.landurbplan.2014.01.017.

    Article  Google Scholar 

  • Wu, J. (2004). Effects of changing scale on landscape pattern analysis: Scaling relations. Landscape Ecology, 19(2), 125–138.

    Article  Google Scholar 

  • Wu, J. (2014). Urban ecology and sustainability: The state-of-the-science and future directions. Landscape and Urban Planning, 125, 209–221. https://doi.org/10.1016/j.landurbplan.2014.01.018.

    Article  Google Scholar 

  • Wu, J., He, C., Huang, G., & Yu, D. (2013). Urban landscape ecology: Past, present, and future. In Landscape ecology for sustainable environment and culture (pp. 37–53). Berlin: Springer. https://doi.org/10.1007/978-94-007-6530-6.

  • Wu, J., Shen, W., Sun, W., & Tueller, P. T. (2002). Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecology, 17(8), 761–782.

    Article  Google Scholar 

  • Xu, H. (2014). Ecological quality assessment of urban green spaces based on landscape metrics: A case of Nanjing, China. Computer Modeling & New Technologies, 18(12A), 384–391.

    Google Scholar 

  • Ying, X., Guang-ming, Z., Gui-qiu, C., & Lin, T. (2007). Combining AHP with GIS in synthetic evaluation of eco-environment quality—A case study of Hunan Province, China. Ecological Modelling, 209, 97–109. https://doi.org/10.1016/j.ecolmodel.2007.06.007.

    Article  Google Scholar 

  • Zhang, L., Wu, J., Zhen, Y., & Shu, J. (2004). RETRACTED: A GIS-based gradient analysis of urban landscape pattern of Shanghai metropolitan area, China. Landscape and Urban Planning, 69(1), 1–16.

    Article  Google Scholar 

  • Zhao, M., Kong, Z., Escobedo, F. J., & Gao, J. (2010). Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. Journal of Environmental Management, 91(4), 807–813.

    Article  CAS  Google Scholar 

  • Zhou, W., Huang, G., & Cadenasso, M. L. (2011). Landscape and urban planning does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landscape and Urban Planning, 102(1), 54–63. https://doi.org/10.1016/j.landurbplan.2011.03.009.

    Article  Google Scholar 

  • Zhou, X., & Wang, Y.-C. (2011). Spatial–temporal dynamics of urban green space in response to rapid urbanization and greening policies. Landscape and Urban Planning, 100(3), 268–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Soltanifard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanifard, H., Jafari, E. A conceptual framework to assess ecological quality of urban green space: a case study in Mashhad city, Iran. Environ Dev Sustain 21, 1781–1808 (2019). https://doi.org/10.1007/s10668-018-0103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-018-0103-5

Keywords

Navigation