Skip to main content

Advertisement

Log in

A study on mountain front recharge by using integrated techniques in the hard rock aquifers of southern India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Mountain front recharge (MFR) is the contribution of mountains to recharge the aquifers in the adjacent basins. The estimation of MFR is essential to obtain a detailed investigation of recharge of the groundwater at the mountain front. This study summarises the current understanding of recharge processes by comparing daily groundwater fluctuation to daily rainfall and identifies the recharge rates. The recharge rates vary with time due to difference in water table depth and travel time. Thus to understand the MFR along the foothills of Courtallam, a total of 14 surface water, rainwater and groundwater samples were collected and measured for stable isotopes. The isotopic data were used to investigate the recharge process and to identify the elevations to recharge. The study findings also suggest that predominantly rainfall along the foothills contributes recharge to the riparian zone (basin block region), whereas foothill regions receive recharge from rainfall over mountain block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aggarwal, P. K., Froehlich, K., & Kulkarni, K. M. (2009). Environmental isotopes in groundwater studies. Groundwater, 2, 69.

    Google Scholar 

  • Alia. A. (2000). An institutional analysis of changes in land use pattern and water scarcity in Dak Lak province, Vietnam. In Conference proceeding on institutions, livelihoods and the environment: Change and response in mainland Southeast Asia. Copenhagen, 27–29 September 2000, 30 p.

  • Anderson, T. W., Freethey, G. W., & Tucci, P. (1992). Geohydrology and water resources of alluvial basins in south-central Arizona and parts of adjacent states. US Government Printing Office.

  • Andrew, H., Manning, D., & Solomon, Kip. (2003). Using noble gases to investigate mountain-front recharge. Journal of Hydrology, 275, 194–207.

    Article  Google Scholar 

  • Balasubramanian, A., & Sastri, J. C. V. (1994). Groundwater resources of Tamirabarani River basin, Tamil Nadu (pp. 484–501). Inland Water Resources, India.

  • Baskaran, S., Ransley, T., Brodie, R. S., & Baker, P. (2009). Investigating groundwater- river interactions using environ-mental tracers. Australian Journal of Earth Science, 56, 13–19.

    Article  Google Scholar 

  • Bhagyashri, C., Maggirwar, B., & Umrikar, N. (2011). Influence of various factors on the fluctuation of groundwater level in hard rock terrain and its importance in the assessment of groundwater. Journal of Geology and Mining Research, 3, 305–317.

    Google Scholar 

  • Bouchaou, L., Michelot, J. L., Chauve, P., Mania, J. E., & Mudry, J. (1995). Apports des isotopes stables a`l’étude des modalitésd’alimentation des aquife`res du Tadla (Maroc) sous climat semi-aride. Comptes Rendus de l’Academie des Sciences, 320, 95–101.

    CAS  Google Scholar 

  • Bouchaou, L., Michelot, J. L., Vengosh, A., Hsissou, Y., Qurtobi, M., Gaye, C. B., et al. (2008). Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco. Journal of Hydrology, 352, 267–287.

    Article  Google Scholar 

  • CGWB. (2009). District groundwater brochure Tirunelveli district, Tamil Nadu. Technical report series, 5.

  • Chidambaram, S., Prasanna, M. V., Ramanathan, A. L., Vasu, K., Hameed, S., Warrier, U. K., et al. (2009). Stable isotopic signatures in precipitation of southwest monsoon of Tamil Nadu. Current Science, 96, 9–10.

    Google Scholar 

  • Corkhill, E. F., & Mason, D. A. (1995). Hydrogeology and simulation of ground water flow Prescott active management area, Yavapai County, Arizona. Modeling report no. 9. Phoenix, Arizona: Arizona Department of Water Resources.

  • Craig, H. (1961). Isotopic variations in meteoric waters. American Association for the Advancement of Science, 133, 1702–1703.

    Article  CAS  Google Scholar 

  • Dangaard, W. (1964). Stable isotopes in precipitation. Tellus, 16, 436–468.

    Google Scholar 

  • Datta, P. S., Tyagi, S. K., & Chandrasekharan, H. (1991). Factors controlling stable isotope composition of rainfall in New Delhi, India. Journal of Hydrology, 128, 223–236.

    Article  CAS  Google Scholar 

  • Davidson, E. S. (1973). Geohydrology and water resources of the Tucson Basin, Arizona. USGS water supply paper 1939-E.Reston, Virginia USGS.

  • Deshpande, R. D., Maurya, A. S., Angasaria, R. C., Dave, M., Shukla, A. D., Bhandari, N., et al. (2013). Isotopic studies of mega cryo meteors in Western India. Current Science, 104(6), 25.

    Google Scholar 

  • Eastoe, C. J., Gu, A., & Long, A. (2004). The origins, ages, and flow paths of groundwater in Tucson Basin: Results of a study of multiple isotope systems. In J. F. Hogan, F. M. Phillips, & B. R. Scanlon (Eds.), Groundwater recharge in a desert environment the Southwestern United States (pp. 217–234). Washington, D.C.: AGU.

    Chapter  Google Scholar 

  • Eid, M. M., Abdel Rahman, M. T., Zaghloul, E. A., & Elbeih, S. F. (2006). Integrated remote sensing and GIS for proposing groundwater recharge locations, case study at West El-Nubariya Canal, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 9, 113–134.

    Google Scholar 

  • Elbeih, F. (2007). Impact of groundwater recharge on the surrounding environment. Ph.D. thesis Faculty of Engineering, Ain Shams University, Egypt.

  • Gat, J. R. (1981). Groundwater. In Stable isotope hydrology (pp. 223–240). Vienna: IAEA.

  • Huntley, D. (1979). Ground water recharge to the aquifers of northern San Luis Valley, Colorado. Geological Society of America Bulletin, Part II, 90(8), 1196–1281.

    Article  Google Scholar 

  • Kambhammettu, B. V. N. P., James, P., King, J. P., & Praveena, A. (2011). Evaluation of mountain-front recharges estimation techniques for Southern New Mexico basins. International Journal of Water Resources and Environmental Engineering, 3(3), 66–72.

    Google Scholar 

  • Kondoh, A., & Shimada, J. (1997). The origin of precipitation in Eastern Asia by deuterium excess. Journal of Japan Society of Hydrology and Water Resources, 10(6), 627–629.

    Article  Google Scholar 

  • Krishnamurthy, J., Mani, A., Jayaraman, V., & Manivel, M. (2000). Groundwater resources development in hard rock terrain–An approach using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 2(3–4), 204–215.

    Article  Google Scholar 

  • Lu, X., Jin, M., Martinus, T., van Genuchten, M. T., & Wang, B. (2010). Groundwater recharge at five representative sites in the Hebei plain. China: National Ground Water Association. doi:10.1111/j.1745-6584.2009.00667.

    Book  Google Scholar 

  • Machavaram, M. V., & Krishnamurthy, R. V. (1995). Earth surface evaporation process: A case study from the Great Lakes region of the United States based on deuterium excess in precipitation. Geochimica et Cosmochimica Acta, 59, 4279–4283.

    Article  CAS  Google Scholar 

  • Manning, A. H., & Solomon, D. K. (2003). Using noble gases to investigate mountain-front recharge. Journal of Hydrology, 275(3), 194–207.

    Article  Google Scholar 

  • Mondal, N. C., & Singh, V. S. (2004). A new approach to delineate the groundwater recharge zone in hard rock terrain. Current Science, 87, 5.

    Google Scholar 

  • Morbacher, C. J. (1984). Mountain-front recharge to the Tucson Basin from the Santa Catalina Mountains. M.Sc. thesis, Department of Geosciences, University of Arizona, Tucson.

  • Mukherjee, T. K., & Chandrasekharan, H. (1993). Environmental stable isotopes on rainfall over Delhi and Bombay-some observations. Journal of Nuclear Agriculture and Biology, 22, 34–41.

    CAS  Google Scholar 

  • Nitin, M., Khare, D., Gupta, K., & Shukla, R. (2014). Impact of land-use change on groundwater—A review. Advances in Water Resource and Protection, 2, 28–41.

    Google Scholar 

  • Ping, J., Nichol, C., & Wei, X. (2014). Quantification of groundwater recharge using the chloride mass balance method in a semi-arid mountain terrain, South Interior British Columbia, Canada. Journal of Chemical and Pharmaceutical Research, 6(1), 383–388.

    CAS  Google Scholar 

  • Plummer, L. N., Bexfield, L. M., Anderholm, S. K., Sanford, W. E., & Busenberg, E. (2004). Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Mid- dle Rio Grande Basin, New Mexico. USGS Water-resources investigations report 03-4131. Reston, Virginia, USGS.

  • Public Works Department. (2002). Groundwater perspectives: A profile of Tirunelveli District. Tamilnadu: Tamilnadu Public Works Department.

    Google Scholar 

  • Rozanski, K., Araguas-Araguas, L., & Gonfiantini, R. (1993). Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records, American Geophysical Union Monograph, 78, 1–36.

    Google Scholar 

  • Salama, R. B., Tapley, I., Ishii, T., & Hawkes, G. (1994). Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques. Journal of Hydrology, 162(1–2), 119–141.

    Article  Google Scholar 

  • Seeyan, S., & Merkel, B. (2014). Determination of recharge by means of isotopes and water chemistry in Shaqlawa-Harrir Basin, Kurdistan Region, Iraq. Hydrology Current Research, 5, 179. doi:10.4172/2157-7587.1000179.

    Article  CAS  Google Scholar 

  • Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B., & Weerasekera, W. L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota. Sri Lanka Using GIS Techniques. doi:10.1016/j.gsf.2015.03.002.

    Article  Google Scholar 

  • Subramani, T. (2005). Hydrogeology and identification of geochemical processes in Chittar River Basin, Tamil Nadu. Unpublished Ph.D. Thesis, Anna University.

  • Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River basin, Tamil Nadu, India. Journal of Environmental Geology, 47, 1099–1110. doi:10.1007/s00254-005-1243-0.

    Article  CAS  Google Scholar 

  • Subramani, T., Rajmohan, N., & Elango, L. (2010). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment, 162, 123–137.

    Article  CAS  Google Scholar 

  • Thivya, C., Chidambaram, S., Keesari, T., Prasanna, M. V., Thilagavathi, R., Adithya, V. S., et al. (2015). Lithological and hydrochemical controls on distribution and speciation of uranium in ground waters of hard-rock granitic aquifers of Madurai District, Tamil Nadu, India. Environmental Geochemistry and Health, 37, 1–13. doi:10.1007/s10653-015-9735-7.

    Article  CAS  Google Scholar 

  • Thivya, C., Chidambaram, S., Rao, M. S., Gopalakrishnan, M., Thilagavathi, R., Prasanna, M. V., et al. (2016). Identification of recharge processes in groundwater in hard rock aquifers of Madurai District using stable isotopes. Environmental Processes . doi:10.1007/s40710-016-0137-3.

    Article  Google Scholar 

  • Tiedeman, C. R., Kernodle, J. M., & McAda, D. P. (1998). Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico. USGS water-resources investigation report Reston,Virginia, USGS., 98-4172.

  • Vodila, G., Palcsu, L., Futo, I., & Szanto, Z. (2011). A 9-year record of stable isotope ratios of precipitation in Eastern Hungary: Implications on isotope hydrology and regional palaeoclimatology. Journal of Hydrology, 400, 144–153.

    Article  CAS  Google Scholar 

  • Wilson, L. G., DeCook, K. J., & Neuman, S. P. (1980). Final report: Regional recharge research for southwest alluvial basins. Water Resources Research Center, Dep. Hydrol. and Water Res., Univ. of AZ., Tuscon, AZ.

Download references

Acknowledgements

The authors would like to thank The Science and Engineering Research Board (SERB), New Delhi (No: SB/S4/ES-699/2013), for providing necessary financial support to carry out this study, and the author Banajarani Panda wishes to express her sincere thanks to Department of Science and Technology for providing the Inspire fellowship (No: DST/INSPIRE Fellowship/[IF150615], 27 October 2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Prasanna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, B., Chidambaram, S., Ganesh, N. et al. A study on mountain front recharge by using integrated techniques in the hard rock aquifers of southern India. Environ Dev Sustain 20, 2243–2259 (2018). https://doi.org/10.1007/s10668-017-9987-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-017-9987-8

Keywords

Navigation