Skip to main content

Advertisement

Log in

Analytical comparisons in a three-echelon closed-loop supply chain with price and marketing effort-dependent demand: game theory approaches

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Over the last few decades, closed-loop supply chain (CLSC) has received increasing attention due to concerns over the environment and social liability. Moreover, recycling and remanufacturing of the used products have been examined because of various factors such as concerns over the environment, lack of resources, government legislations. In this research, we consider a three-echelon closed-loop supply chain consisting of a manufacturer, a third party and a retailer. The manufacturer manipulates both manufacturing from raw materials and remanufacturing from the second hands products collected by third party simultaneously. We assume that the market demand depends on selling price and marketing efforts. First, we modeled the supply chain under centralized and decentralized policies and compared their performances using numerical examples. Then we compared and analyzed the optimal decisions under different scenarios by studying the impacts of marketing efforts and collection rate on the decision variables and concluded that the supply chain profit in centralized scenario is larger than decentralized one. Using a comprehensive sensitivity analysis, managerial insights are provided. Moreover, based on the derived results, from the perspective of remanufacturing process and consumers’ welfare, one can conclude that the manufacture-Stackelberg case is often the most effective scenario in CLSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atasu, A., Guide, V. D. R., & Wassenhove, L. N. (2008). Product reuse economics in closed-loop supply chain research. Production and Operations Management, 17(5), 483–496.

    Article  Google Scholar 

  • Choi, T. M., Li, Y., & Xu, L. (2013). Channel leadership, performance and coordination in closed loop supply chains. International Journal of Production Economics, 146(1), 371–380.

    Article  Google Scholar 

  • Gao, J., Han, H., Hou, L., & Wang, H. (2015). Pricing and effort decisions in a closed-loop supply chain under different channel power structures. Journal of Cleaner Production, 112(3), 2043–2057.

    Google Scholar 

  • Gao, J., Wang, X., Yang, Q., & Zhong, Q. (2016). Pricing decisions of a dual-channel closed-loop supply chain under uncertain demand of indirect channel. Mathematical Problems in Engineering, 2016, 6053510.

    Google Scholar 

  • Ghosh, D., & Shah, J. (2012). A comparative analysis of greening policies across supply chain structures. International Journal of Production Economics, 135(2), 568–583.

    Article  Google Scholar 

  • Giri, B., Chakraborty, A., & Maiti, T. (2015). Quality and pricing decisions in a two-echelon supply chain under multi-manufacturer competition. The International Journal of Advanced Manufacturing Technology, 78, 1927–1941.

    Article  Google Scholar 

  • Giri, B., & Sharma, S. (2015). Optimizing a closed-loop supply chain with manufacturing defects and quality dependent return rate. Journal of Manufacturing Systems, 35, 92–111.

    Article  Google Scholar 

  • Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603–626.

    Article  Google Scholar 

  • Guide, V. D. R., Jr., & Van Wassenhove, L. N. (2009). OR FORUM-the evolution of closed-loop supply chain research. Operations Research, 57(1), 10–18.

    Article  Google Scholar 

  • Hong, X., Wang, Z., Wang, D., & Zhang, H. (2013). Decision models of closed-loop supply chain with remanufacturing under hybrid dual-channel collection. The International Journal of Advanced Manufacturing Technology, 68(5–8), 1851–1865.

    Article  Google Scholar 

  • Hong, X., Xu, L., Du, P., & Wang, W. (2015). Joint advertising, pricing and collection decisions in a closed-loop supply chain. International Journal of Production Economics, 167, 12–22.

    Article  Google Scholar 

  • Huang, M., Song, M., Lee, L. H., & Ching, W. K. (2013). Analysis for strategy of closed-loop supply chain with dual recycling channel. International Journal of Production Economics, 144(2), 510–520.

    Article  Google Scholar 

  • Liu, G., Zhang, J., & Tang, W. (2015). Strategic transfer pricing in a marketing–operations interface with quality level and advertising dependent goodwill. Omega, 56, 1–15.

    Article  Google Scholar 

  • Ma, P., Wang, H., & Shang, J. (2013). Supply chain channel strategies with quality and marketing effort-dependent demand. International Journal of Production Economics, 144(2), 572–581.

    Article  Google Scholar 

  • Maiti, T., & Giri, B. C. (2014). A closed loop supply chain under retail price and product quality dependent demand. Journal of Manufacturing Systems, 37, 624–637.

    Article  Google Scholar 

  • Pokharel, S., & Mutha, A. (2009). Perspectives in reverse logistics: A review. Resources, Conservation and Recycling, 53(4), 175–182.

    Article  Google Scholar 

  • Sasikumar, P., & Kannan, G. (2008). Issues in reverse supply chains, part II: Reverse distribution issues—an overview. International Journal of Sustainable Engineering, 1(4), 234–249.

    Article  Google Scholar 

  • Savaskan, R. C., Bhattacharya, S., & Van Wassenhove, L. N. (2004). Closed-loop supply chain models with product remanufacturing. Management Science, 50(2), 239–252.

    Article  Google Scholar 

  • Savaskan, R. C., & Van Wassenhove, L. N. (2006). Reverse channel design: the case of competing retailers. Management Science, 52(1), 1–14.

    Article  Google Scholar 

  • Teunter, R. H., & Flapper, S. D. P. (2011). Optimal core acquisition and remanufacturing policies under uncertain core quality fractions. European Journal of Operational Research, 210(2), 241–248.

    Article  Google Scholar 

  • Wu, C. H. (2015). Strategic and operational decisions under sales competition and collection competition for end-of-use products in remanufacturing. International Journal of Production Economics, 169, 11–20.

    Article  Google Scholar 

  • Xiong, Y., Zhao, Q., & Zhou, Y. (2016). Manufacturer-remanufacturing vs supplier-remanufacturing in a closed-loop supply chain. International Journal of Production Economics, 176, 21–28.

    Article  Google Scholar 

  • Xu, J., & Liu, N. (2014). Research on closed loop supply chain with reference price effect. Journal of Intelligent Manufacturing. doi:10.1007/s10845-014-0961-0.

    Google Scholar 

  • Zhang, J., Chiang, W. Y. K., & Liang, L. (2014). Strategic pricing with reference effects in a competitive supply chain”. Omega, 44, 126–135.

    Article  Google Scholar 

  • Zhang, R., Liu, B., & Wang, W. (2012). Pricing decisions in a dual channels system with different power structures. Economic Modeling, 29(2), 523–533.

    Article  Google Scholar 

  • Zhao, J., & Wei, J. (2014). The coordinating contracts for a fuzzy supply chain with effort and price dependent demand. Applied Mathematical Modeling, 38(9), 2476–2489.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for their helpful suggestions that have strongly enhanced this paper. The author would like to thank the financial support from the University of Tehran for this research under Grant Number 30015-1-02. This work is supported by Iran National Science Foundation (INSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ata Allah Taleizadeh.

Appendices

Appendix 1: Proof of Proposition 1

The Hessian matrix of Π C is;

$$H\left( {p,\theta ,\tau } \right) = \left( {\begin{array}{*{20}l} {\frac{{\partial^{2} \varPi_{C} }}{{\partial p^{2} }}} \hfill & {\frac{{\partial^{2} \varPi_{C} }}{\partial p \partial \theta }} \hfill & {\frac{{\partial^{2} \varPi_{C} }}{\partial p \partial \tau }} \hfill \\ {\frac{{\partial^{2} \varPi_{C} }}{\partial \theta \partial p}} \hfill & {\frac{{\partial^{2} \varPi_{C} }}{{\partial \theta^{2} }}} \hfill & {\frac{{\partial^{2} \varPi_{C} }}{\partial \theta \partial \tau }} \hfill \\ {\frac{{\partial^{2} \varPi_{C} }}{\partial \tau \partial p}} \hfill & {\frac{{\partial^{2} \varPi_{C} }}{\partial \tau \partial \theta }} \hfill & {\frac{{\partial^{2} \varPi_{C} }}{{\partial \tau^{2} }}} \hfill \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} { - 2\alpha } & \beta & { - \alpha (\Delta - A)} \\ \beta & { - 2c_{\theta } } & {\beta (\Delta - A)} \\ { - \alpha (\Delta - A)} & {\beta (\Delta - A)} & { - 2c_{\tau } } \\ \end{array} } \right)$$

To ensure Π C is jointly concave in p, θ and τ, we check that,

$$\left| {H_{1} } \right| = - 2\alpha < 0$$
$$\left| {H_{2} } \right| = 4\alpha c_{\theta } - \beta^{2} > 0,\quad {\text{if}}\;c_{\theta } > \frac{{\beta^{2} }}{4\alpha }$$
$$\left| {H_{3} } \right| = 2\left[ {\alpha^{2} c_{\theta } \left( {\Delta - A} \right)^{2} - c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)} \right] < 0,\quad {\text{if}}\;c_{\tau } > \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4\alpha c_{\theta } - \beta^{2} }}$$

Under the above conditions, the Hessian matrix is negative definite and the optimal decision can be obtained through solving the first-order derivatives of Eq. (4) with respect to p, θ and τ.

$$\frac{{\partial \varPi_{C} }}{\partial p} = \phi + \beta \theta - 2\alpha p + \alpha c_{m} - \alpha \tau (\Delta - A) = 0$$
$$\frac{{\partial \varPi_{C} }}{\partial \theta } = \beta p - 2c_{\theta } \theta - \beta c_{m} + \beta \tau (\Delta - A) = 0$$
$$\frac{{\partial \varPi_{C} }}{\partial \tau } = (\Delta - A)(\phi - \alpha p + \beta \theta ) - 2c_{\tau } \tau = 0$$

By solving above equations, Proposition 1 is obtained.

Appendix 2: Proof of Proposition 2

First, we analyze the retailer’s reaction to maximize its own profit. Using Eq. (2), we have the first-order derivatives of ΠR with respect to m and θ and the Hessian matrix of ΠR as follows:

$$\frac{{\partial \varPi_{R} }}{{\partial m^{M} }} = \phi - 2\alpha m^{M} + \beta \theta^{M} - \alpha w^{M} = 0$$
$$\frac{{\partial \varPi_{R} }}{{\partial \theta^{M} }} = \beta m^{M} - 2c_{\theta } \theta^{M} = 0$$
$$H^{R} = \left( {\begin{array}{*{20}c} { - 2\alpha } & \beta \\ \beta & { - 2c_{\theta } } \\ \end{array} } \right)$$

The Hessian matrix of ΠR is a negative definite for all values of m and θ if \(c_{\theta } > \frac{{\beta^{2} }}{4\alpha }\). With solving above equations,

$$m^{M} = \frac{{2c_{\theta } \left( {\phi - \alpha w^{M} } \right)}}{{4\alpha c_{\theta } - \beta^{2} }}\quad {\text{and}}\quad \theta^{M} = \frac{{\beta \left( {\phi - \alpha w^{M} } \right)}}{{4\alpha c_{\theta } - \beta^{2} }}$$

Then, we investigate the third party’s reaction to maximize its own profit. Using Eq. (3), from the first-order derivative of Π3P respect to τ, we have;

$$\frac{{\partial \varPi_{3P} }}{{\partial \tau^{M} }} = \left( {b^{M} - A} \right)\left( {\phi - \alpha \left( {w^{M} + m^{M} } \right) + \beta \theta^{M} } \right) - 2c_{\tau } \tau^{M} = 0$$
$$\frac{{\partial^{2} \varPi_{3P} }}{{\left( {\partial \tau^{R} } \right)^{2} }} = - 2c_{\tau } < 0$$

The optimal collection rate is derived by setting the first-order derivative of profit function respect to collection rate equal to zero as follows:

$$\tau^{M} = \frac{{\left( {b^{M} - A} \right)\left( {\phi - \alpha \left( {w^{M} + m^{M} } \right) + \beta \theta^{M} } \right)}}{{2c_{\tau } }}$$

After taking the best reactions of the retailer and the third party, the manufacturer by substituting m, θ and τ to own profit, determines optimal wholesale price, w, and transfer price, b. The Hessian matrix and the first-order derivatives of Eq. (1) with respect to w and b are;

$$\frac{{\partial \varPi_{M} }}{{\partial w^{M} }} = \frac{{2\alpha c_{\theta } \left[ { - 2\alpha^{2} c_{\theta } \left( {\Delta - b^{M} } \right)\left( {b^{M} - A} \right)\left( {\phi - \alpha w^{M} } \right) + c_{\tau } \phi \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)\left( {2w^{M} - c_{m} } \right)} \right]}}{{c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} }}$$
$$\frac{{\partial \varPi_{M} }}{{\partial b^{M} }} = \frac{{2\alpha^{2} c_{\theta }^{2} \left( {\phi - \alpha w^{M} } \right)^{2} \left[ {\left( {\Delta - b^{M} } \right) - \left( {b^{M} - A} \right)} \right]}}{{c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} }}$$

and,

$$H^{M} = \left( {\begin{array}{*{20}c} {\frac{{ - 4\alpha^{2} c_{\theta } \left[ {c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } \left( {\Delta - b^{M} } \right)\left( {b^{M} - A} \right)} \right]}}{{c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} }}} & {\frac{{ - 4\alpha^{3} c_{\theta }^{2} \left( {\phi - \alpha w^{M} } \right)\left[ {\left( {\Delta - b^{M} } \right) - \left( {b^{M} - A} \right)} \right]}}{{c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} }}} \\ {\frac{{ - 4\alpha^{3} c_{\theta }^{2} \left( {\phi - \alpha w^{M} } \right)\left[ {\left( {\Delta - b^{M} } \right) - \left( {b^{M} - A} \right)} \right]}}{{c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} }}} & {\frac{{ - 4\alpha^{2} c_{\theta }^{2} \left( {\phi - \alpha w^{M} } \right)^{2} }}{{c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} }}} \\ \end{array} } \right)$$

The Hessian H is negative definite if \(c_{\tau } > \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4(4\alpha c_{\theta } - \beta^{2} )}}\).

By setting the first-order derivatives equal to zero, we obtain the optimal w and b and by substituting them into pervious equations, Proposition (2) is obtained.

Appendix 3: Proof of Proposition 3

Similar to the proof of Proposition (2), the best response of the third party for collection rate, τ, is;

$$\tau^{R} = \frac{{\left( {b^{M} - A} \right)\left( {\phi - \alpha \left( {w^{M} + m^{M} } \right) + \beta \theta^{M} } \right)}}{{2c_{\tau } }}$$

Then, by substituting τ into manufacturer’s profit, we obtain Hessian matrix and the first-order derivative of manufacturer’s profit.

$$H^{M} = \left( {\begin{array}{*{20}c} {\frac{{\alpha^{2} (b - A)(\Delta - b)}}{{c_{\tau } }} - 2\alpha } & {\frac{{ - \alpha \left( {\phi - \alpha \left( {w^{M} + m^{M} } \right) + \beta \theta^{M} } \right)\left[ {\left( {\Delta - b^{R} } \right) - \left( {b^{R} - A} \right)} \right]}}{{c_{\tau } }}} \\ {\frac{{ - \alpha \left( {\phi - \alpha \left( {w^{M} + m^{M} } \right) + \beta \theta^{M} } \right)\left[ {\left( {\Delta - b^{R} } \right) - \left( {b^{R} - A} \right)} \right]}}{{c_{\tau } }}} & {\frac{{ - \left( {\phi - \alpha \left( {w^{M} + m^{M} } \right) + \beta \theta^{M} } \right)^{2} }}{{c_{\tau } }}} \\ \end{array} } \right)$$
$$\begin{array}{*{20}l} {\frac{{\partial \varPi_{M} }}{{\partial w^{R} }} = \phi - \alpha \left( {m^{R} + 2w^{R} - c_{m} } \right) + \beta \theta^{R} - \frac{{\alpha (b - A)(\Delta - b)\left( {\phi - \alpha \left( {m^{R} + w^{R} } \right) + \beta \theta^{R} } \right)}}{{c_{\tau } }} = 0} \hfill \\ {\frac{{\partial \varPi_{M} }}{{\partial b^{M} }} = \frac{{\left( {\phi - \alpha \left( {w^{M} + m^{M} } \right) + \beta \theta^{M} } \right)^{2} \left[ {\left( {\Delta - b^{R} } \right) - \left( {b^{R} - A} \right)} \right]}}{{2c_{\tau } }} = 0} \hfill \\ \end{array}$$

The Hessian matrix H is negative definite if \(c_{\tau } > \frac{{\alpha (\Delta - A)^{2} }}{8}\). The optimal w and b, according to the above conditions, are

$$b^{R} = \frac{{\Delta + A}}{2}$$
$$w^{R} = \frac{{4\phi c_{\tau } - 4\alpha c_{\tau } \left( {m^{R} - c_{m} } \right) + 4\beta c_{\tau } \theta^{R} - \left[ {\alpha \left( {\Delta - A} \right)^{2} \left( {\phi - \alpha m^{R} + \beta \theta^{R} } \right)} \right]}}{{8\alpha c_{\tau } - \alpha^{2} (\Delta - A)^{2} }}$$

After getting the reactions of the manufacturer and the third party, the retailer specifies the unit retail margin, m, and marketing effort level, θ. The retailer maximizes its own profit by using the first-order derivatives of Eq. (2) with respect to m and θ and setting them equal to zero. Then by substituting them into pervious Equations, Proposition 3 is obtained.

$$\begin{array}{*{20}l} {\frac{{\partial \varPi_{R} }}{{\partial m^{R} }} = \frac{{4c_{\tau } \left( {\phi - \alpha c_{m} - 2\alpha m^{R} + \beta \theta^{R} } \right)}}{{8c_{\tau } - \alpha (\Delta - A)^{2} }} = 0} \hfill \\ {\frac{{\partial \varPi_{R} }}{{\partial \theta^{R} }} = \frac{{4c_{\tau } \left( {\beta m^{R} - 4c_{\theta } \theta^{R} } \right) + 2\alpha c_{\theta } \theta^{R} (\Delta - A)^{2} }}{{8c_{\tau } - \alpha (\Delta - b)^{2} }} = 0} \hfill \\ \end{array}$$
$$H^{R} = \left( {\begin{array}{*{20}c} {\frac{{ - 8\alpha c_{\tau } }}{{8c_{\tau } - \alpha (\Delta - A)^{2} }}} & {\frac{{4\beta c_{\tau } }}{{8c_{\tau } - \alpha (\Delta - A)^{2} }}} \\ {\frac{{4\beta c_{\tau } }}{{8c_{\tau } - \alpha (\Delta - A)^{2} }}} & { - 2c_{\theta } } \\ \end{array} } \right)$$

And the Hessian matrix is negative definite if \(c_{\tau } > \frac{{\alpha (\Delta - A)^{2} }}{8}\) and \(c_{\tau } > \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{8\alpha c_{\theta } - \beta^{2} }}\)

Appendix 4: Proof of Proposition 4

Similar to the proof of Proposition (2), the best response of the retailer for unit retail margin m and marketing effort level θ is;

$$m^{3P} = \frac{{2c_{\theta } \left( {\phi - \alpha w^{3P} } \right)}}{{4\alpha c_{\theta } - \beta^{2} }}$$
$$\theta^{3P} = \frac{{\beta \left( {\phi - \alpha w^{3P} } \right)}}{{4\alpha c_{\theta } - \beta^{2} }}$$

moreover,

$$\frac{{\partial \varPi_{M} }}{{\partial w^{3P} }} = \frac{{\phi + \alpha \left( {c_{m} - 2w^{3P} } \right) - \alpha \tau^{3P} \left( {\Delta - b^{3P} } \right)}}{{4\alpha c_{\theta } - \beta^{2} }}$$
$$\frac{{\partial^{2} \varPi_{M} }}{{\left( {\partial w^{3P} } \right)^{2} }} = \frac{{ - 4\alpha^{2} c_{\theta } }}{{4\alpha c_{\theta } - \beta^{2} }}$$

so,

$$w^{3P} = \frac{{\phi + \alpha c_{m} - \alpha \tau^{3P} \left( {\Delta - b^{3P} } \right)}}{2\alpha }$$

eventually, the third party gets reactions of the manufacturer and the retailer and determines collection rate, τ, and transfer price, b. So,

$$\begin{array}{*{20}l} {\frac{{\partial \varPi_{3P} }}{{\partial \tau^{3P} }} = \frac{{\alpha c_{\theta } \left( {b^{3P} - A} \right)\left( {\phi - \alpha c_{m} } \right) + 2\alpha^{2} c_{\theta } \tau^{3P} \left( {b^{3P} - A} \right)\left( {\Delta - b^{3P} } \right) - 2c_{\tau } \tau^{3P} \left( {4\alpha c_{\theta } - \beta^{2} } \right)}}{{4\alpha c_{\theta } - \beta^{2} }}} \hfill \\ {\frac{{\partial \varPi_{3P} }}{{\partial b^{3P} }} = \frac{{\alpha c_{\theta } \tau^{3P} \left[ {\left( {\phi - \alpha c_{m} } \right) + \alpha \tau^{3P} \left[ {\left( {\Delta - b^{3P} } \right) - \left( {b^{3P} - A} \right)} \right]} \right]}}{{4\alpha c_{\theta } - \beta^{2} }}} \hfill \\ \end{array}$$

The Hessian matrix is negative definite if \(c_{\tau } > \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4\left( {4\alpha c_{\theta } - \beta^{2} } \right)}}\).

$$H^{3P} = \left( {\begin{array}{*{20}c} {\frac{{2\left[ {\alpha^{2} c_{\theta } \left( {b^{3P} - A} \right)\left( {\Delta - b^{3P} } \right) - c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)} \right]}}{{4\alpha c_{\theta } - \beta^{2} }}} & {\frac{{\alpha c_{\theta } \left[ {\left( {\phi - \alpha c_{m} } \right) + 2\alpha \tau^{3P} \left[ {\left( {\Delta - b^{3P} } \right) - \left( {b^{3P} - A} \right)} \right]} \right]}}{{4\alpha c_{\theta } - \beta^{2} }}} \\ {\frac{{\alpha c_{\theta } \left[ {\left( {\phi - \alpha c_{m} } \right) + 2\alpha \tau^{3P} \left[ {\left( {\Delta - b^{3P} } \right) - \left( {b^{3P} - A} \right)} \right]} \right]}}{{4\alpha c_{\theta } - \beta^{2} }}} & {\frac{{2\alpha^{2} \tau^{2} c_{\theta } }}{{4\alpha c_{\theta } - \beta^{2} }}} \\ \end{array} } \right)$$

Finally, by substituting τ and b into pervious equations, Proposition 4 is obtained.

Appendix 5: Proof of Proposition 5

The proof of Proposition (5) is similar to Proposition (4) by this difference that the manufacturer determines transfer price b, so we omit this proof.

Appendix 6: Proof of Lemma 2

From Propositions (2), (4) and (5), we conclude that \(\tau^{M} = \tau_{1}^{3P} = \tau_{2}^{3P}\). Also from “Appendix 1”, we have \(c_{\theta } > \frac{{\beta^{2} }}{4\alpha }\) and \(c_{\tau } > \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4\alpha c_{\theta } - \beta^{2} }}\). Furthermore, we have \(\phi - \alpha p > 0\) and \(p > c_{m}\), so \(\phi - \alpha c_{m} > 0\). By substituting these inequalities in each equation, we can prove subsequent Lemmas easily.

$$\tau^{C} - \tau^{M} = \frac{{3\alpha c_{\theta } c_{\tau } \left( {\phi - \alpha c_{m} } \right)\left( {\Delta - A} \right)\left( {4\alpha c_{\theta } - \beta^{2} } \right)}}{{\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } \left( {\Delta - A} \right)^{2} } \right]\left[ {c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } \left( {\Delta - A} \right)^{2} } \right]}} > 0 \to \tau^{C} > \tau^{M}$$
$$\begin{aligned} \tau^{C} - \tau^{R} = & \frac{{\alpha c_{\theta } \left( {\phi - \alpha c_{m} } \right)\left( {\Delta - A} \right)\left[ {2c_{\tau } \left( {6\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}{{\left[ {2c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - 2\alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}} \\ \ge & \frac{{\alpha c_{\theta } \left( {\phi - \alpha c_{m} } \right)(\Delta - A)\left[ {\alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {2\left( {\frac{{6\alpha c_{\theta } - \beta^{2} }}{{4\alpha c_{\theta } - \beta^{2} }}} \right) - 1} \right]}}{{\left[ {2c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - 2\alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}} > 0 \to \tau^{C} > \tau^{R} . \\ \end{aligned}$$

Furthermore, with comparing τ M and τ R, we extract the following relationships:

$$\tau^{M} - \tau^{R} = \frac{{\alpha c_{\theta } \left( {\phi - \alpha c_{m} } \right)(\Delta - A)\left[ {2c_{\tau } \beta^{2} - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}{{2\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}$$
  1. 1.

    \(\tau^{R} < \tau^{M} ,\quad {\text{if}}\;\frac{{3\beta^{2} }}{4\alpha } > c_{\theta }\)

  2. 2.

    \(\tau^{R} < \tau^{M} ,\quad {\text{if}}\;c_{\theta } > \frac{{3\beta^{2} }}{4\alpha }\quad {\text{and}}\quad \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{2\beta^{2} }} > c_{\tau }\)

  3. 3.

    \(\tau^{R} < \tau^{M} ,\quad {\text{if}}\;c_{\theta } > \frac{{3\beta^{2} }}{4\alpha }\quad {\text{and}}\quad c_{\tau } > \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{2\beta^{2} }}\)

Finally, by summarizing all of above relationships, Lemma (2) is obtained.

Appendix 7: Proof of Lemma 3

From Propositions (2), (3) and (5), we conclude \(b^{M} = b^{R} = b_{2}^{3P}\). Also

$$b_{1}^{3P} - b^{M} > \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4\alpha c_{\theta } - \beta^{2} }}\frac{{2\left( {4\alpha c_{\theta } - \beta^{2} } \right)}}{{\alpha^{2} c_{\theta } (\Delta - A)}} - \frac{{\Delta - A}}{2} = \frac{3}{2}(\Delta - A) > 0 \to b_{1}^{3P} > b^{M}$$

From above inequality, Lemma (3) is concluded.

Appendix 8: Proof of Lemma 4

First, we prove easily, \(w_{2}^{3P} < w_{1}^{3P}\), \(w^{M} < w_{2}^{3P}\) and \(w^{R} < w_{2}^{3P}\), because;

$$w_{1}^{3P} - w_{2}^{3P} = \frac{{\phi - \alpha c_{m} }}{4\alpha } > 0$$
$$w_{2}^{3P} - w^{M} = \frac{{\alpha c_{\theta } (\Delta - A)^{2} \left( {\phi - \alpha c_{m} } \right)}}{{4\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}} > 0$$
$$w_{2}^{3P} - w^{R} = \frac{{\left( {\phi - \alpha c_{m} } \right)\left[ {8\left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} c_{\tau }^{2} - \left[ {\alpha^{2} c_{\theta } \left( {16\alpha c_{\theta } - 3\beta^{2} } \right)(\Delta - A)^{2} } \right]c_{\tau } + \alpha^{4} c_{\theta }^{2} (\Delta - A)^{4} } \right]}}{{4\alpha \left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}} > 0$$

Then, we compare \(w^{M}\) with \(w^{R}\) and derive two roots \(c_{\tau 1} ,c_{\tau 2}\) from the following equations if \(c_{\theta } < \frac{{\beta^{2} }}{2\alpha }\).

$$w^{M} - w^{R} = \frac{{\left( {\phi - \alpha c_{m} } \right)\left[ {4\left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} c_{\tau }^{2} - \left[ {2\alpha^{2} c_{\theta } \left( {6\alpha c_{\theta } - \beta^{2} } \right)(\Delta - A)^{2} } \right]c_{\tau } + \alpha^{4} c_{\theta }^{2} (\Delta - A)^{4} } \right]}}{{2\alpha \left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}$$
$$\begin{array}{*{20}l} {c_{\tau 1} = \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} \left[ {6\alpha c_{\theta } - \beta^{2} - \sqrt {\left( {\beta^{2} - 2\alpha c_{\theta } } \right)\left( {14\alpha c_{\theta } - 3\beta^{2} } \right)} } \right]}}{{4\left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} }}} \hfill \\ {c_{\tau 2} = \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} \left[ {6\alpha c_{\theta } - \beta^{2} + \sqrt {\left( {\beta^{2} - 2\alpha c_{\theta } } \right)\left( {14\alpha c_{\theta } - 3\beta^{2} } \right)} } \right]}}{{4\left( {4\alpha c_{\theta } - \beta^{2} } \right)^{2} }}} \hfill \\ \end{array}$$

Also if \(\frac{{3\beta^{2} }}{8\alpha } > c_{\theta }\), we infer \(c_{\tau 1} < c_{\tau }^{*} = \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4\alpha c_{\theta } - \beta^{2} }} < c_{\tau 2}\) and according to condition shown in inequality (50), we have c τ1 < c τ . So we conclude that w M < w R if c τ2 > c τ and w R < w M if c τ  > c τ2. As well as, if \(\frac{{\beta^{2} }}{2\alpha } > c_{\theta } > \frac{{3\beta^{2} }}{8\alpha }\), we infer \(c_{\tau 1} < c_{\tau 2} < c_{\tau }^{*} = \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4\alpha c_{\theta } - \beta^{2} }}\) and according to inequality (50), we conclude that w R < w M. Otherwise if \(c_{\theta } > \frac{{\beta^{2} }}{2\alpha }\), the equation shows the difference between w M with w R does not have real roots, therefore w R < w M. Finally, by summarizing all of above results, Lemma (4) is concluded.

Appendix 9: Proof of Lemma 5

First, we prove easily, \(p_{1}^{3P} < p_{2}^{3P}\), \(p_{2}^{3P} < p^{M}\), \(p^{R} < p^{C}\) and \(p^{M} < p^{C}\) if \(\frac{{\beta^{2} }}{2\alpha } > c_{\theta }\) and \(p_{2}^{3P} < p_{1}^{3P}\), \(p^{M} < p_{2}^{3P}\), \(p^{C} < p^{R}\) and \(p^{C} < p^{M}\) if \(c_{\theta } > \frac{{\beta^{2} }}{2\alpha }\), because

$$p_{1}^{3P} - p_{2}^{3P} = \frac{{\left( {2\alpha c_{\theta } - \beta^{2} } \right)\left( {\phi - \alpha c_{m} } \right)}}{{4\alpha \left( {4\alpha c_{\theta } - \beta^{2} } \right)}}$$
$$p_{2}^{3P} - p^{M} = \frac{{\alpha c_{\theta } (\Delta - A)^{2} \left( {2\alpha c_{\theta } - \beta^{2} } \right)\left( {\phi - \alpha c_{m} } \right)}}{{4\left( {4\alpha c_{\theta } - \beta^{2} } \right)\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}$$
$$p^{R} - p^{C} = \frac{{4c_{\theta } c_{\tau }^{2} \left( {\phi - \alpha c_{m} } \right)\left( {2\alpha c_{\theta } - \beta^{2} } \right)}}{{\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}$$
$$p^{M} - p^{C} = \frac{{c_{\tau } \left( {\phi - \alpha c_{m} } \right)\left( {2\alpha c_{\theta } - \beta^{2} } \right)\left[ {\alpha^{2} c_{\theta } (\Delta - A)^{2} + 2c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)} \right]}}{{\alpha \left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}$$

Furthermore, with comparing p R and \(p_{1}^{3P}\), we extract the following relations:

  1. 1.

    \(p^{R} < p_{1}^{3P} ,\quad {\text{if}}\;\frac{{3\beta^{2} }}{8\alpha } > c_{\theta }\)

  2. 2.

    \(p_{1}^{3P} < p^{R} ,\quad {\text{if}}\;\frac{{\beta^{2} }}{2\alpha } > c_{\theta } > \frac{{3\beta^{2} }}{8\alpha }\)

  3. 3.

    \(p^{R} < p_{1}^{3P} ,\quad {\text{if}}\;c_{\theta } > \frac{{\beta^{2} }}{2\alpha }\)

And also with comparing p M and p R, we have:

  1. 1.

    \(p^{R} < p^{M} ,\quad {\text{if}}\;\frac{{\beta^{2} }}{2\alpha } > c_{\theta }\)

  2. 2.

    \(p^{M} < p^{R} ,\quad {\text{if}}\;\frac{{3\beta^{2} }}{4\alpha } > c_{\theta } > \frac{{\beta^{2} }}{2\alpha }\)

  3. 3.

    \(p^{R} < p^{M} ,\quad {\text{if}}\;c_{\theta } > \frac{{3\beta^{2} }}{4\alpha }\quad {\text{and}}\quad \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{2\beta^{2} }} > c_{\tau }\)

  4. 4.

    \(p^{M} < p^{R} ,\quad {\text{if}}\;c_{\theta } > \frac{{3\beta^{2} }}{4\alpha }\quad {\text{and}}\quad c_{\tau } > \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{2\beta^{2} }}\)

Then, we compare p R with \(p_{2}^{3P}\) and extract two roots \(c_{\tau 3} ,c_{\tau 4}\) from the following equations if \(\frac{{19\beta^{2} }}{72\alpha } > c_{\theta }\) or \(c_{\theta } > \frac{{3\beta^{2} }}{8\alpha }\).

$$p^{R} - p_{2}^{3P} = \frac{{c_{\tau } \left( {\phi - \alpha c_{m} } \right)\left( {2\alpha c_{\theta } - \beta^{2} } \right)\left[ {8\beta^{2} \left( {4\alpha c_{\theta } - \beta^{2} } \right)c_{\tau }^{2} - \alpha^{2} c_{\theta } (\Delta - A)^{2} \left( {24\alpha c_{\theta } - 5\beta^{2} } \right)c_{\tau } + \alpha^{4} c_{\theta }^{2} (\Delta - A)^{4} } \right]}}{{4\alpha \left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}$$
$$\begin{array}{*{20}l} {c_{\tau 3} = \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} \left[ {24\alpha c_{\theta } - 5\beta^{2} - \sqrt {\left( {8\alpha c_{\theta } - 3\beta^{2} } \right)\left( {72\alpha c_{\theta } - 19\beta^{2} } \right)} } \right]}}{{16\beta^{2} \left( {4\alpha c_{\theta } - \beta^{2} } \right)}}} \hfill \\ {c_{\tau 4} = \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} \left[ {24\alpha c_{\theta } - 5\beta^{2} + \sqrt {\left( {8\alpha c_{\theta } - 3\beta^{2} } \right)\left( {72\alpha c_{\theta } - 19\beta^{2} } \right)} } \right]}}{{16\beta^{2} \left( {4\alpha c_{\theta } - \beta^{2} } \right)}}} \hfill \\ \end{array}$$

Also \(c_{\theta } = \frac{{\beta^{2} }}{2\alpha }\) is another root for above equation. So if \(\frac{{19\beta^{2} }}{72\alpha } > c_{\theta }\) or \(\frac{{\beta^{2} }}{2\alpha } > c_{\theta } > \frac{{3\beta^{2} }}{8\alpha }\), we infer \(c_{\tau 3} < c_{\tau 4} < c_{\tau }^{*} = \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4\alpha c_{\theta } - \beta^{2} }}\) and according to inequality (50), one can derive that \(p^{R} < p_{2}^{3P}\). As well as, if \(\frac{{3\beta^{2} }}{5\alpha } > c_{\theta } > \frac{{\beta^{2} }}{2\alpha }\), we conclude \(c_{\tau 3} < c_{\tau 4} < c_{\tau }^{*} = \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4\alpha c_{\theta } - \beta^{2} }}\) and earn \(p_{2}^{3P} < p^{R}\) consequently. Also, if \(c_{\theta } > \frac{{3\beta^{2} }}{5\alpha }\), we infer \(c_{\tau 3} < c_{\tau }^{*} = \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{4\alpha c_{\theta } - \beta^{2} }} < c_{\tau 4}\) and according to inequality (50), we conclude that \(p^{R} < p_{2}^{3P}\) if \(c_{\tau 4} > c_{\tau }\) and \(p_{2}^{3P} < p^{R}\) if \(c_{\tau } > c_{\tau 4}\). Otherwise if \(\frac{{3\beta^{2} }}{8\alpha } > c_{\theta } > \frac{{19\beta^{2} }}{72\alpha }\), then \(c_{\tau 3} ,c_{\tau 4}\) are not real roots and therefore \(p^{R} < p_{2}^{3P}\). Finally, by summarizing all of above results, Lemma (5) is proved.

Appendix 10: Proof of lemma 6

First, we prove easily, \(\theta_{1}^{3P} < \theta^{M}\), \(\theta^{M} < \theta^{C}\), \(\theta^{R} < \theta^{C}\), \(\theta_{1}^{3P} < \theta_{2}^{3P}\) and \(\theta_{2}^{3P} < \theta^{M}\), because

$$\theta^{M} - \theta_{1}^{3P} = \frac{{\beta c_{\tau } \left( {\phi - \alpha c_{m} } \right)}}{{4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} }} > 0$$
$$\theta^{C} - \theta^{M} = \frac{{\beta c_{\tau } \left( {\phi - \alpha c_{m} } \right)\left[ {2c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) + \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}{{\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}} > 0$$
$$\theta^{C} - \theta^{R} = \frac{{4\alpha \beta c_{\theta } c_{\tau }^{2} \left( {\phi - \alpha c_{m} } \right)}}{{\left[ {c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}} > 0$$
$$\theta_{2}^{3P} - \theta_{1}^{3P} = \frac{{\beta \left( {\phi - \alpha c_{m} } \right)}}{{4\left( {4\alpha c_{\theta } - \beta^{2} } \right)}} > 0$$
$$\theta^{M} - \theta_{2}^{3P} = \frac{{\alpha^{2} \beta c_{\theta } (\Delta - A)^{2} \left( {\phi - \alpha c_{m} } \right)}}{{4\left( {4\alpha c_{\theta } - \beta^{2} } \right)\left[ {c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}} > 0$$

Also with comparing θ M and θ R, we infer following relationship;

  1. 1.

    \(\theta^{R} < \theta^{M} ,\quad {\text{if}}\;\frac{{3\beta^{2} }}{4\alpha } > c_{\theta }\)

  2. 2.

    \(\theta^{M} < \theta^{R} ,\quad {\text{if}}\;c_{\theta } > \frac{{3\beta^{2} }}{4\alpha }\quad {\text{and}}\quad \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{2\beta^{2} }} > c_{\tau }\)

  3. 3.

    \(\theta^{R} < \theta^{M} ,\quad {\text{if}}\;c_{\theta } > \frac{{3\beta^{2} }}{4\alpha }\quad {\text{and}}\quad c_{\tau } > \frac{{\alpha^{2} c_{\theta } (\Delta - A)^{2} }}{{2\beta^{2} }}\)

Furthermore, with comparing \(\theta_{1}^{3P}\) and θ R, then we have;

  1. 1.

    \(\theta^{R} < \theta_{1}^{3P} ,\quad {\text{if}}\;\frac{{3\beta^{2} }}{8\alpha } > c_{\theta }\)

  2. 2.

    \(\theta_{1}^{3P} < \theta^{R} ,\quad {\text{if}}\;c_{\theta } > \frac{{3\beta^{2} }}{8\alpha }\)

Finally, by summarizing all of above results, Lemma (6) is proved.

Appendix 11: Proof of Lemma 7

We prove easily, \(\varPi_{T}^{3P,1} < \varPi_{T}^{M}\), \(\varPi_{T}^{3P,2} < \varPi_{T}^{M}\), \(\varPi_{T}^{M} < \varPi_{T}^{C}\) and \(\varPi_{T}^{R} < \varPi_{T}^{C}\), because

$$\varPi_{T}^{M} - \varPi_{T}^{3P,1} = \frac{{c_{\theta } c_{\tau } \left( {\phi - \alpha c_{m} } \right)^{2} \left[ {5c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right)} \right]}}{{\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]^{2} }} > 0$$
$$\varPi_{T}^{M} - \varPi_{T}^{3P,2} = \frac{{\alpha^{2} c_{\theta }^{2} c_{\tau } \left( {\phi - \alpha c_{m} } \right)^{2} (\Delta - A)^{2} \left[ {16c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) + \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}{{16\left( {4\alpha c_{\theta } - \beta^{2} } \right)\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]^{2} }} > 0$$
$$\varPi_{T}^{*} - \varPi_{T}^{M} = \frac{{c_{\theta } c_{\tau }^{2} \left( {\phi - \alpha c_{m} } \right)^{2} \left( {4\alpha c_{\theta } - \beta^{2} } \right)\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) + 5\alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}}{{\left[ {4c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]^{2} \left[ {c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]}} > 0$$
$$\varPi_{T}^{*} - \varPi_{T}^{R} = \frac{{\alpha^{2} c_{\theta }^{2} c_{\tau } \left( {\phi - \alpha c_{m} } \right)^{2} \left[ {64c_{\theta } c_{\tau }^{2} + (\Delta - A)^{2} \left( {4\alpha c_{\theta } - \beta^{2} } \right)c_{\tau } - \alpha^{2} c_{\theta } (\Delta - A)^{4} } \right]}}{{4\left[ {c_{\tau } \left( {4\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]\left[ {c_{\tau } \left( {8\alpha c_{\theta } - \beta^{2} } \right) - \alpha^{2} c_{\theta } (\Delta - A)^{2} } \right]^{2} }} > 0$$

By summarizing all of above results, Lemma (7) is proved too.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sane Zerang, E., Taleizadeh, A.A. & Razmi, J. Analytical comparisons in a three-echelon closed-loop supply chain with price and marketing effort-dependent demand: game theory approaches. Environ Dev Sustain 20, 451–478 (2018). https://doi.org/10.1007/s10668-016-9893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-016-9893-5

Keywords

Navigation