Skip to main content

Advertisement

Log in

Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study—Shabestar Plain, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Groundwater aquifers have always been confronted with significant challenges around the world such as climate change, over-extraction, pollution by wastewaters, and saltwater intrusion in coastal areas. Prediction of groundwater level under the effects of climate change is more important in water resource management. This study has therefore been evaluated the effects of two climate parameters (i.e., precipitation and temperature) in groundwater level for the Shabestar Plain, Iran. For this end, four models from General Circulation Models (GCM) were then used to evaluate future climate change scenarios of the Representative Concentration Pathway (i.e., RCP2.6, RCP4.5, RCP8.5). In the next phase, to reduce the spatial complexity of observation wells, clustering analysis was used. In case of groundwater level modeling, time series in the base period, Least Square Support Vector Machine (LSSVM), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Nonlinear Autoregressive Network with Exogenous inputs (NARX) were also used. To improve the prediction accuracy, time series preprocessing made by wavelet-based de-noising approach was used. Analysis of the results illustrates an increase in temperature and a decrease in precipitation for study region in the future period times. The results also reveal that hybrid techniques of the wavelet-NARX give best results in comparison with the other models. A simulation result illustrates that the groundwater level declines in RCP2.6, 4.5, and 8.5, which gives average levels of 0.61, 0.81, and 1.53 m, respectively, for the future period years (i.e., 2020–2024). These results would lead to continuous groundwater depletion. These findings emphasize the necessity of the importance of extraction policies in water resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ANFIS:

Adaptive Neuro-Fuzzy Inference System

ANN:

Artificial Neural Network

ARX:

Autoregressive Exogenous Model

BNU:

Beijing Normal University, China

CCSM4:

Community Climate System Model, USA

CMIP5:

Fifth Assessment Report of IPCC

FN:

Feedforward network

EC-EARTH:

European Community Earth-System Model, Greece

GCM:

General Circulation Model

GFDL:

Geophysical Fluid Dynamics Laboratory, USA

IPCC:

Intergovernmental Panel on Climate Change

LSSVM:

Least Square Support Vector Machine

LARS-WG:

Long Ashton Research Station-Weather Generator

MAE:

Mean absolute error

NARX:

Nonlinear Autoregressive Network with Exogenous inputs

NCAR:

National Center for Atmospheric Research, USA

R :

Correlation coefficient

R 2 :

Coefficient of determination

RBF:

Radial basis function

RCP:

Representative concentration pathway

RMSE:

Root mean square error

RNN:

Recurrent Neural Network

SEE:

standard error estimates

References

  • Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4), 28–40.

    Article  Google Scholar 

  • Banerjee, P., Singh, V., Chatttopadhyay, K., Chandra, P., & Singh, B. (2011). Artificial neural network model as a potential alternative for groundwater salinity forecasting. Journal of Hydrology., 398(3-4), 212–220.

    Article  CAS  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Chang, F. J., Chen, P. A., Liu, C. W., Liao, V. H. C., & Liao, C. M. (2013). Regional estimation of groundwater arsenic concentrations through systematical dynamic-neural modeling. Journal of Hydrology., 499, 265–274.

    Article  CAS  Google Scholar 

  • Chang, J., Wang, G., & Mao, T. (2015). Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. Journal of Hydrology., 529, 1211–1220.

    Article  Google Scholar 

  • Chang, F. J., Chang, L. C., Huang, C. W., & Kao, I. F. (2016). Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. Journal of Hydrology., 541, 965–976.

    Article  Google Scholar 

  • Chaudhari, S., Felfelani, F., Shin, S., & Pokhrel, Y. (2018). Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. Journal of Hydrology., 560, 342–353.

    Article  Google Scholar 

  • Chitsazan, M., Rahmani, G., & Neyamadpour, A. (2013). Groundwater level simulation using artificial neural network: a case study from Aghili plain, urban area of Gotvand, south-west Iran. Geopersia., 3(1), 35–46.

    Google Scholar 

  • Choy, K., & Chan, C. W. (2003). Modelling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of Systems Science., 34(14-15), 763–773.

    Article  Google Scholar 

  • De Graaf, I. E. M. (2016). Limits to global groundwater consumption: effects on groundwater levels and river low flows. Utrecht: Utrecht University.

  • Deb, P., Babel, M. S., & Denis, A. F. (2018). Multi-GCMs approach for assessing climate change impact on water resources in Thailand. Modeling Earth Systems and Environment., 4(2), 825–839.

    Article  Google Scholar 

  • Deb, P., Kiem, A. S., & Willgoose, G. (2019a). A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. Journal of Hydrology., 575, 273–291.

    Article  Google Scholar 

  • Deb, P., Kiem, A. S., & Willgoose, G. (2019b). Mechanisms influencing non-stationarity in rainfall-runoff relationships in southeast Australia. Journal of Hydrology., 571, 749–764.

    Article  Google Scholar 

  • Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transactions on Information Theory., 41(3), 613–627.

    Article  Google Scholar 

  • Ebrahimi, H., & Rajaee, T. (2017). Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change., 148, 181–191.

    Article  Google Scholar 

  • Emamgholizadeh, S., Moslemi, K., & Karami, G. (2014). Prediction the groundwater level of bastam plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water resources management., 28(15), 5433–5446.

    Article  Google Scholar 

  • Eslamian, S. (2014). Handbook of engineering hydrology, Vol. 3: modeling, climate change, and variability. USA: CRC Press.

    Book  Google Scholar 

  • Eslamian, S., & Eslamian, F. A. (2017). Handbook of drought and water scarcity: environmental impacts and analysis of drought and water scarcity. USA: CRC Press.

    Book  Google Scholar 

  • Gu, Y., Zhao, W., & Wu, Z. (2010). Least squares support vector machine algorithm [J]. Journal of Tsinghua University, (Science and Technology), 7, 1063–1066.

    Google Scholar 

  • Guzman, S. M., Paz, J. O., & Tagert, M. L. M. (2017). The use of NARX neural networks to forecast daily groundwater levels. Water resources management., 31(5), 1591–1603.

    Article  Google Scholar 

  • Guzman, S. M., Paz, J. O., Tagert, M. L. M., & Mercer, A. E. (2018). Evaluation of seasonally classified inputs for the prediction of aily groundwater levels: NARX networks vs support vector machines. Environmental Modeling & Assessment., 24(2), 223–234.

    Article  Google Scholar 

  • Havril, T., Tóth, Á., Molson, J. W., Galsa, A., & Mádl-Szőnyi, J. (2018). Impacts of predicted climate change on groundwater flow systems: can wetlands disappear due to recharge reduction? Journal of Hydrology., 563, 1169–1180.

    Article  Google Scholar 

  • Jang, J. S., & Sun, C. T. (1995). Neuro-fuzzy modeling and control. Proceedings of the IEEE., 83(3), 378–406.

    Article  Google Scholar 

  • Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence. IEEE Transactions on Automatic Control., 42(10), 1482–1484.

    Article  Google Scholar 

  • Jeihouni, E., Eslamian, S., Mohammadi, M., & Zareian, M. J. (2019). Simulation of groundwater level fluctuations in response to main climate parameters using a wavelet–ANN hybrid technique for the Shabestar Plain, Iran. Environmental Earth Sciences., 78(10), 293.

    Article  Google Scholar 

  • Kath, J., & Dyer, F. J. (2017). Why groundwater matters: an introduction for policy-makers and managers. Policy Studies., 38(5), 447–461.

    Article  Google Scholar 

  • Legates, D. R., & McCabe, G. J., Jr. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research., 35(1), 233–241.

    Article  Google Scholar 

  • MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability., 1(14), 281–297.

    Google Scholar 

  • Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies., 7(1), 1–13.

    Article  Google Scholar 

  • Mohanty, S., Jha, M. K., Kumar, A., & Sudheer, K. (2010). Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. Water Resources Management., 24(9), 1845–1865.

    Article  Google Scholar 

  • Nayak, P. C., Rao, Y. S., & Sudheer, K. (2006). Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management., 20(1), 77–90.

    Article  Google Scholar 

  • Nourani, V., & Mousavi, S. (2016). Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. Journal of Hydrology., 536, 10–25.

    Article  Google Scholar 

  • Nourani, V., Baghanam, A. H., Rahimi, A. Y., & Nejad, F. H. (2014). Evaluation of wavelet-based de-noising approach in hydrological models linked to artificial neural networks, Computational intelligence techniques in earth and environmental sciences. Springer., 209-241.

  • Nourani, V., Mousavi, S., Dabrowska, D., & Sadikoglu, F. (2017). Conjunction of radial basis function interpolator and artificial intelligence models for time-space modeling of contaminant transport in porous media. Journal of Hydrology., 548, 569–587.

    Article  Google Scholar 

  • Nourani, V., Baghanam, A. H., & Gokcekus, H. (2018). Data-driven ensemble model to statistically downscale rainfall using nonlinear predictor screening approach. Journal of Hydrology., 565, 538–551.

    Article  Google Scholar 

  • Partovian, A., Nourani, V., & Alami, M. T. (2016). Hybrid denoising-jittering data processing approach to enhance sediment load prediction of muddy rivers. Journal of Mountain Science., 13(12), 2135–2146.

    Article  Google Scholar 

  • Raj, A. S., Oliver, D. H., Srinivas, Y., & Viswanath, J. (2017). Wavelet-based analysis on rainfall and water table depth forecasting using Neural Networks in Kanyakumari district, Tamil Nadu, India. Groundwater for Sustainable Development., 5, 178–186.

    Article  Google Scholar 

  • Rajaee, T., Nourani, V., & Pouraslan, F. (2016). Groundwater level forecasting using wavelet and kriging. Journal of Hydraulic Structures., 2(2), 1–21.

    Google Scholar 

  • Rajaee, T., Ebrahimi, H., & Nourani, V. (2019). A review of the artificial intelligence methods in groundwater level modeling. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2018.12.037.

  • Ranjan, P., Kazama, S., & Sawamoto, M. (2006). Effects of climate change on coastal fresh groundwater resources. Global Environmental Change., 16(4), 388–399.

    Article  Google Scholar 

  • Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5 A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1-2), 33.

    Article  CAS  Google Scholar 

  • Salem, G. S. A., Kazama, S., Shahid, S., & Dey, N. C. (2018). Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agricultural Water Management., 208, 33–42.

    Article  Google Scholar 

  • Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic Change., 35(4), 397–414.

    Article  Google Scholar 

  • Semenov, M. A., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Climate Research., 41, 1–14.

    Article  Google Scholar 

  • Shahid, S., & Hazarika, M. K. (2010). Groundwater drought in the northwestern districts of Bangladesh. Water Resources Management., 24(10), 1989–2006.

    Article  Google Scholar 

  • Shahvari, N., Khalilian, S., Mosavi, S. H., & Mortazavi, S. A. (2019). Assessing climate change impacts on water resources and crop yield: a case study of Varamin plain basin, Iran. Environmental Monitoring and Assessment., 191(3), 134.

    Article  Google Scholar 

  • Shiri, J., Kisi, O., Yoon, H., Lee, K. K., & Nazemi, A. H. (2013). Predicting groundwater level fluctuations with meteorological effect implications—a comparative study among soft computing techniques. Computers & Geosciences., 56, 32–44.

    Article  Google Scholar 

  • Suryanarayana, C., Sudheer, C., Mahammood, V., & Panigrahi, B. K. (2014). An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing, 145, 324–335.

    Article  Google Scholar 

  • Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293–300.

    Article  Google Scholar 

  • Szidarovszky, F., Coppola, E. A., Long, J., Hall, A. D., & Poulton, M. M. (2007). A hybrid artificial neural network-numerical model for groundwater problems. Groundwater., 45(5), 590–600.

    Article  CAS  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116–132. https://doi.org/10.1109/TSMC.1985.6313399.

  • Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., & Clarke, L. E. (2011). RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1-2), 77.

    Article  CAS  Google Scholar 

  • Van Vuuren, D. P., Stehfest, E., Den Elzen, M. G., Kram, T., Van Vliet, J., Deetman, S., Isaac, M., Goldewijk, K. K., Hof, A., & Beltran, A. M. (2011). RCP2.6: exploring the possibility to keep global mean temperature increase below 2 C. Climatic Change, 109(1-2), 95.

    Article  CAS  Google Scholar 

  • Vaux, H. (2011). Groundwater under stress: the importance of management. Environmental Earth Sciences., 62(1), 19–23.

    Article  CAS  Google Scholar 

  • Wada, Y. (2013). Human and climate impacts on global water resources. PhD thesis. Utrecht: Utrecht University.

  • Wang, W. C., Chau, K. W., Xu, D. M., & Chen, X. Y. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resources Management., 29(8), 2655–2675.

    Article  Google Scholar 

  • Wunsch, A., Liesch, T., & Broda, S. (2018). Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX). Journal of Hydrology., 567, 743–758.

    Article  Google Scholar 

  • Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., & Chen, Y. (2014). Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global and Planetary Change., 112, 79–91.

    Article  Google Scholar 

  • Yanping, G. U., Zhao, W., & Zhansong, W. U. (2010). Least squares support vector machine algorithm. Qinghua Daxue Xuebao/J Tsinghua University., 50(7), 1063–1057.

    Google Scholar 

  • Yoon, H., Hyun, Y., Ha, K., Lee, K. K., & Kim, G. B. (2016). A method to improve the stability and accuracy of ANN-and SVM-based time series models for long-term groundwater level prediction. Computers and Geosciences., 90, 144–155.

    Article  Google Scholar 

  • Zamanirad, M., Sedghi, H., Sarraf, A., Saremi, A., & Rezaee, P. (2018). Potential impacts of climate change on groundwater levels on the Kerdi-Shirazi plain, Iran. Environmental Earth Sciences., 77(11), 415.

    Article  Google Scholar 

  • Zhang, Z., Yang, X., Li, H., Li, W., Yan, H., & Shi, F. (2017). Application of a novel hybrid method for spatiotemporal data imputation: a case study of the Minqin County groundwater level. Journal of Hydrology, 553, 384–397.

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks go to the East Azerbaijan Regional Water Organization and Meteorological Organization for their contributions and preparing data used in present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirali Mohammadi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeihouni, E., Mohammadi, M., Eslamian, S. et al. Potential impacts of climate change on groundwater level through hybrid soft-computing methods: a case study—Shabestar Plain, Iran. Environ Monit Assess 191, 620 (2019). https://doi.org/10.1007/s10661-019-7784-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7784-6

Keywords

Navigation