Skip to main content

Advertisement

Log in

Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960–1990) and scenario (2071–2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bergström, S. (1992). The HBV model—its structure and applications. SMHI Reports RH, No. 4, Norrköping.

  • Beven. (2011). I believe in climate change but how precautionary do we need to be in planning for the future? Hydrological Processes, 25, 1517–1520.

    Article  Google Scholar 

  • Booij, M. J. (2005). Impact of climate change on river flooding assessed with different spatial model resolutions. Journal of Hydrology, 303, 176–198. doi:10.1016/j.jhydrol.2004.07.013.

    Article  Google Scholar 

  • Bostan, P. A., Heuvelink, G. B. M., & Akyurek, S. Z. (2012). Comparison of regression and kriging techniques for mapping the average annual precipitation of turkey. International Journal of Applied Earth Observation and Geoinformation, 19, 115–126.

    Article  Google Scholar 

  • Bozkurt, D., & Sen, O. L. (2013). Climate change impacts in the Euphrates–Tigris basin based on different model and scenario simulations. Journal of Hydrology, 480, 149–161.

    Article  Google Scholar 

  • Brundson, C., Fotheringham, A., & Charlton, M. (1996). Geographically weighted regression: a method for exploring spatial nonstationarity. Geographical Analysis, 28, 281–298.

    Google Scholar 

  • Carrrera-Hernandez, J. J., & Gaskin, S. J. (2007). Spatio temporal analysis of daily precipitation and temperature in the basin of Mexico. Journal of Hydrology, 336, 231–249.

    Article  Google Scholar 

  • Chen, H., Xu, C. Y., & Guo, S. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology, 434–435, 36–45.

    Article  Google Scholar 

  • Christensen, J. H., & Christensen, O. B. (2003). Climate modelling: severe summertime flooding in Europe. Nature, 421, 805–806.

    Article  CAS  Google Scholar 

  • Christensen, J. H., Carter, T. R., Rummukainen, M., & Amanatidis, G. (2007). Evaluating the performance and utility of regional climate models: the PRUDENCE project. Climate Change, 81, 1–6.

    Article  Google Scholar 

  • Daly, C., Gibson, W. P., Taylor, G. H., Johnson, G. L., & Pasteris, P. (2002). A knowledge-based approach to the statistical mapping of climate. Climate Research, 22, 99–113.

    Article  Google Scholar 

  • Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., Curtis, J., & Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous united states. International Journal of Climatology, 28, 2031–2064.

    Article  Google Scholar 

  • Dankers, R., Feyen, L. (2008). Climate change impact on flood hazard in Europe: an assessment based on high resolution climate simulations. Journal of Geophysical Research, 113(D19105)

  • Doherty, J. (2004). PEST: model independent parameter estimation. Fifth edition of user manual. Brisbane, Australia: Watermark Numerical Computing.

    Google Scholar 

  • ESRI (Environmental Systems Research Institute). (2014). ArcGIS help 10.1. ArcGIS Resources: http://resources.arcgis.com/en/help/main/10.1/index.html#/What_are_geostatistical_interpolation_techniques/003100000031000000/. Accessed: June 24, 2014.

  • Feidas, H., Kontos, T., Soulakellis, N., & Lagouvardos, K. (2007). A GIS tool for the evaluation of the precipitation forecasts of a numerical weather prediction model using satellite data. Computers & Geosciences, 33, 989–1007.

    Article  Google Scholar 

  • Fotheringham, A. S., Brunsdon, C., & Charlton, M. E. (2002). Geographically weighted regression: the analysis of spatially varying relationships. Chichester: Wiley.

    Google Scholar 

  • Fowler, H. J., Blenkinsop, S., & Tebaldi, C. (2007). Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27, 1547–1578.

    Article  Google Scholar 

  • Fu, C., Chen, J., Dong, L., & Jiang, H. (2012). Field investigation and modeling of runoff generation in a granitic catchment in Zhuhai, China. Journal of Hydrology, 458–459, 87–102.

    Article  Google Scholar 

  • Garcia-Ruiz, J. M., Lopez-Moreno, J. I., Vicente-Serrano, S. M., Lasanta-Martinez, T., & Begueria, S. (2011). Mediterranean water resources in a global change scenario. Earth-Science Reviews, 105, 121–139.

    Article  Google Scholar 

  • Graham, L. P., Andréasson, J., & Carlsson, B. (2007). Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—a case study on the Lule river basin. Climate Change, 81, 293–307. doi:10.1007/s10584-006-9215-2.

    Article  Google Scholar 

  • Ho, H. C., Knudby, A., Sirovyak, P., Xu, Y., Hodul, M., & Herderson, S. B. (2014). Mapping maximum urban air temperature on hot summer days. Remote Sensing of Environment, 154, 38–45.

    Article  Google Scholar 

  • Hurkmans, R. T. W. L., Terink, W., Uijlenhoet, R., Torfs, P. J. J. F., Jacob, D., & Troch, P. A. (2010). Changes in streamflow dynamics in the Rhine basin under three high-resolution climate scenarios. Journal of Climate, 23, 679–699. doi:10.1175/2009JCLI3066.1.

    Article  Google Scholar 

  • IBB (Istanbul Metropolitan Municipality). (2014). İstanbul İl ve İlçe Alan Bilgileri. June 15. Accessed September 08, 2014. http://www.ibb.gov.tr/tr-tr/kurumsal/pages/ilceveilkkademe.aspx.

  • IPCC. (2014). Climate change 2014: impact, adaptation, and vulnerability. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Jia, Q. Y., & Sun, F. H. (2012). Modeling and forecasting process using the HBV model in Liao river delta. Procedia Environmental Sciences, 13, 122–128.

    Article  Google Scholar 

  • Kamarianakis, Y., Feidas, H., Kokolatos, G., Chrysoulakis, N., & Karatzias, V. (2008). Evaluating remotely sensed rainfall estimates using nonlinear mixed models and geographically weighted regression. Environmental Modelling and Software, 23, 1438–1447.

    Article  Google Scholar 

  • Kara, F., Yucel, I., Akyurek, Z. (2015). A comparison of different regional climate models and a downscaling method for extreme rainfall estimation under climate change. Hydrol Sciences Journal (under review).

  • Kay, A. L., Reynard, N. S., & Jones, R. G. (2006). RCM rainfall for UK flood frequency estimation. I. Method and validation. Journal of Hydrology, 318, 151–162.

    Article  Google Scholar 

  • Kleinn, J., Frei, C., Gurtz, J., Lüthi, D., Vidale, P. L., & Schär, C. (2005). Hydrologic simulations in the Rhine basin driven by a regional climate model. Journal of Geophysical Research, 110, D04102. doi:10.1029/2004JD005143.

    Article  Google Scholar 

  • Krause, P., Boyle, D. P., & Base, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97.

    Article  Google Scholar 

  • Kult, J., Choi, W., & Choi, J. (2014). Sensitivity of the Snowmelt Runoff Model to snow covered area and temperature inputs. Applied Geography, 55, 30–38.

    Article  Google Scholar 

  • Lawrence, D., Haddeland, I., Langsholt, E. (2009). Calibration of HBV hydrological models using PEST parameter estimation. OSLO: Norwegian Water Resources and Energy Directorate.

  • Lespinas, F., Ludwig, W., & Heussner, S. (2014). Hydrological and climatic uncertainties associated with modeling the impact of climate change on water resources of small Mediterranean coastal rivers. Journal of Hydrology, 511, 403–422.

    Article  Google Scholar 

  • Lindström, G., & Rodhe, A. (1992). Transit times of water in soil lysimeters from modelling of oxygen-18. Water, Air, and Soil Pollution, 65, 83–100.

    Article  Google Scholar 

  • Lopez-Moreno, J. I., Vicente-Serrano, S. M., Moran-Tejeda, E., Zabalza, J., Lorenzo-Lacruz, J., & Garcia-Ruiz, J. M. (2011). Impact of climate evolution and land use changes on water yield in the ebro basin. Hydrology and Earth System Sciences, 15, 311–322.

    Article  Google Scholar 

  • Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., & Thiele-Eich, I. (2010). Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48, 1–34.

    Article  Google Scholar 

  • Marquinez, J., Lastra, J., & Garcia, P. (2003). Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. Journal of Hydrology, 270, 1–11.

    Article  Google Scholar 

  • Ott, I., Duethmann, D., Liebert, J., Berg, P., Feldmann, H., Ihringer, J., Kunstmann, H., Merz, B., Schaedler, G., & Wagner, S. (2013). High-resolution climate change impact analysis on medium-sized river catchments in Germany: an ensemble assessment. Journal of Hydrometeorology, 14, 1175–1193. doi:10.1175/JHM‐D‐12‐091.1.

    Article  Google Scholar 

  • Propastin, P. (2012). Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 18, 82–90.

    Article  Google Scholar 

  • Rojas, R., Feyen, L., Bianchi, A., & Dosio, A. (2012). Assessment of future flood hazard in Europe using a large ensemble of bias corrected regional climate simulations. Journal of Geophysical Research. doi:10.1029/2012JD017461.

    Google Scholar 

  • Sælthun, N. S. (1996). The nordic HBV model. NVE Publication no. 07, 26 pp.

  • Sunyer, M., Hundecha, Y., Lawrence, D., Madsen, H., Willems, P., Martinkova, M., Vormoor, K., Bürger, G., Kriaučiūnienė, J., Loukas, A., Osuch, M., Yücel, I., & Hanel, M. (2015). Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrology and Earth System Sciences, 19, 1827–1847.

    Article  Google Scholar 

  • Tahir, A. A., Chevallier, P., Arnaud, Y., Neppel, L., & Ahmad, B. (2011). Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. Journal of Hydrology, 409, 104–117.

    Article  Google Scholar 

  • Talei, A., Chua, L. H. C., Quek, C., & Jansson, P. E. (2013). Runoff forecasting using a Takagi–Sugeno neuro-fuzzy model with online learning. Journal of Hydrology, 488, 17–32.

    Article  Google Scholar 

  • TUIK. (2014). Main statistics. Retrieved from Turkish statistical institute official web site: http://www.turkstat.gov.tr/UstMenu.do?metod=temelist

  • USGS. (2014). NLCD 92 land cover class definitions. retrieved from the USGS land cover institute (LCI): http://landcover.usgs.gov/classes.php

  • Van der Linden, P., & Mitchell, J. (2009). ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Exeter, UK: Met Office Hadley Centre.

    Google Scholar 

  • Varis, O., Kajander, T., & Lemmelä, R. (2004). Climate and water: from climate models to water resources management and vice versa. Climatic Change, 66, 321–344.

    Article  Google Scholar 

  • Wang, S., Jiao, S., & Xin, H. (2013). Spatio-temporal characteristics of temperature and precipitation in Sichuan province, southwestern china, 1960–2009. Quaternary International, 286, 103–115.

    Article  Google Scholar 

  • Willems, P. (2009). A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environmental Modelling & Software, 24(3), 311–321.

    Article  Google Scholar 

  • Yilmaz, K. K., & Yazicigil, H. (2011). Potential impacts of climate change on Turkish water resources: a review. In A. Baba, G. Tayfur, O. Gündüz, K. W. F. Howard, M. J. Friedel, & A. Chambel (Eds.), Climate change and its effects on water resources (pp. 105–114). Netherland: Springer.

    Chapter  Google Scholar 

  • Yucel, I., Guventurk, A., & Sen, O. L. (2015). Climate change impacts on snowmelt runoff for mountainous transboundary basins in eastern Turkey. International Journal of Climatology, 35, 215–228.

    Article  Google Scholar 

  • Zhao, C., Wang, W., & Xing, W. (2012). Regional analysis of extreme temperature indices for the Haihe river basin from 1960 to 2009. Procedia Engineering, 28, 604–607.

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the European procedures for flood frequency estimation (FloodFreq) Cost Action (ES0901) and TÜBİTAK ARDEB ÇAYDAG Scientific and Technological Research Project Program (1001) with Project No. 110Y036. Authors thank to Deborah Lawrence from Hydrological Modelling Section of Norwegian Water Resources and Energy Directorate on the efforts of calibrating the HBV model.

Compliance with ethical standards

Funding

This study was funded by TUBITAK Cost Action (ES0901) (grant number 110Y036).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Yucel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, F., Yucel, I. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method. Environ Monit Assess 187, 580 (2015). https://doi.org/10.1007/s10661-015-4808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4808-8

Keywords

Navigation