Skip to main content

Advertisement

Log in

Chemical speciation in natural and brine sea waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A combined approach consisting of monitoring and thermodynamic modeling was used in order to calculate the concentration of trace element species in water samples of a broad salinity range and to explain their chemical behaviour. The study was performed on water samples (fresh, marine, hyper-saline) taken from the area of Burgas Bay, Bulgaria. The ion association model based on Debye–Hückel theory using the sst2008.dat database and the ion interaction model based on Pitzer theory using a new pit2010.dat database were compared and combined for the purposes of this study. The new pit2010.dat database combines the sst2008.dat database and the pitzer.dat database of the PHREEQCI computer program as well as the thermodynamic data for the elements Fe, Mn, Cu, Zn, Cd and Pb and their Pitzer ion interaction parameters. The results showed that: (1) the predominant species in fresh waters were free ions of Mn2+ (73.6%), Zn2+ (58.0%) and Cd2+ ions (78.3%) as well as carbonate species CuCO\(_{3}^{0}\) (81.8%), PbCO\(_{3}^{0}\) (77.2%) and hydroxy species Fe(OH)\(_{3}^{0}\) (55.2%) and Fe(OH)\(_{2}^{+}\)(35.6%); (2) an increase in chloride species MeCl\(_{n}^{2-n }\)(n = 1–4, Me = Mn, Zn, Cu, Pb and Cd) and of the hydroxy species Fe(OH)\(_{2}^{+ }\) for Fe was calculated for sea and hyper-saline water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, J. A., Brown, D. S., & Novo-Gradac, K. J. (1991). MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: Version 3.0 user’s manual (pp. 106). U.S. Environ. Prot. Agency, EPA/600/3-91/021.

  • ATSDR (2000). Draft toxicological profile for manganese. Atlanta USA: US Department of Health and Human Environ Monit Assess Services, Public Health Service, Retrieved from http://www.atsdr.cdc.gov/toxprofiles/tp151.html.

  • Ball, J. W., & Nordstrom, D. K. (1991). WATEQ4F-User’s manual (pp. 185). U.S., Geological Survey Open-File Report 90–129.

  • Brimblecombe, P., & Clegg, S. L. (1990). The solubility and behavior of acid gases in the marine aerosol. Journal of Atmospheric Chemistry, 7, 1.

    Article  Google Scholar 

  • Christov, Chr. (2004). Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary Na + K + Mg + Cl + SO4 + H2O system at T = 298.15 K. Journal of Chemical Thermodynamics, 36, 223–235.

    Article  CAS  Google Scholar 

  • Clegg, S. L., & Brimblecombe, P. (1990). The solubility of volatile electrolytes in multicomponent solutions with atmospheric applications. In: D. C. Melchior, & R. L. Bassett (Eds.), Chemical modeling in aqueous systems II. Washington D. C. : ACS.

    Google Scholar 

  • Einav, R., & Lokiec, F. (2003). Environmental aspects of a desalination plant in Ashkelon. Desalination, 156, 79–85.

    Article  CAS  Google Scholar 

  • Gilberto, C., Maddux, W. S. , & Burkholder, P. R. (1970). Some consequences of brine pollution in the Bahía Fosforescente, PuertoRico. Limnology and Oceanography, 1970, 15(2), 246–249.

    Article  Google Scholar 

  • Goldberg, R. N. (1979). Evaluated activity and osmotic coefficients for aqueous solutions: bi-univalent compounds of lead, copper, manganese, and uranium. Journal of Physical and Chemical Reference Data, 8, 1005.

    Article  CAS  Google Scholar 

  • Goldberg, R. N. (1981). Evaluated activity and osmotic coefficients for aqueous solutions: Bi-univalent compounds of zinc, cadmium, and ethylene bis(trimethylammonium) chloride and iodide. Journal of Physical and Chemical Reference Data, 10, 1.

    Article  CAS  Google Scholar 

  • Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods in seawater analysis. Germany: Wiley.

    Book  Google Scholar 

  • Grenthe, I., & Puigdomenech, I. (1997). Modelling in aquatic chemistry (pp. 724). OECD Publications.

  • Hamer, W. J., & Wu, Y. C. (1972). Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes in Water at 25°C. Journal of Physical and Chemical Reference Data, 1, 1047.

    Article  CAS  Google Scholar 

  • Harvie, C. E., & Weare, J. H. (1980). The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25°C. Geochimica et Cosmochimica Acta, 44, 981–997.

    Article  CAS  Google Scholar 

  • Harvie, C. E., Eugster, H. P., & Weare, J. H. (1982). Mineral equilibria in the six component seawater systems Na-K-Mg-Ca-Cl-SO4-H2O at 25°C. Geochimica et Cosmochimica Acta, 46, 1603.

    Article  CAS  Google Scholar 

  • Harvie, C. E., Moller, N., & Weare, J. H. (1984). The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4 -OH-HCO3 -CO3 -CO2 -H2O system to high ionic strengths at 25°C. Geochimica et Cosmochimica Acta, 48, 723–751.

    Article  CAS  Google Scholar 

  • Klopman, G. (1968). Chemical reactivity and the concept of charge- and frontier-controlled reactions. Journal of the American Chemical Society, 90, 223–234.

    Article  CAS  Google Scholar 

  • Leonova, G. A., Bobrov, G. A., Bogush, A. A., Bychinskii, V. A., & Anoshin, G. N. (2007). Geochemical characteristics of the Modern State of Salt Lakes in Altai Krai. Geochemistry International, 45(10), 1025–1039.

    Article  Google Scholar 

  • Meerganz von Medeazza, G. L. (2005). “Direct” and socially-induced environmental impacts of desalination. Desalination, 185, 57–70.

    Article  CAS  Google Scholar 

  • Millero, F. J. (2001). Speciation of metals in natural waters. Geochemical Transactions, 2, 88.

    Article  Google Scholar 

  • Millero, F. J., & Hawke, D. J. (1992). Ionic interactions of divalent metals in natural waters. Marine Chemistry, 40, 19–48.

    Article  CAS  Google Scholar 

  • Millero, F. J., & Pierrot, D. (1998). A chemical equilibrium model for natural waters. Aquatic Geochemistry, 4, 153–199.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L. (1995). User’s guide to PHREEQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations (pp. 143). U.S. Geological Survey Water-Resources Investigations Report 95-4227.

  • Pearson, R. (1973). Hard and soft acids and bases. Stroudsburg: Hutchinson.

    Google Scholar 

  • Pitzer, K. S. (1972). Thermodynamic properties of aqueous solutions of bivalent sulphates. Journal of the Chemical Society. Faraday Transactions, 2(68), 101.

    Google Scholar 

  • Pitzer, K. S. (1979). Theory–ion interaction approach. In: R. M. Pytkowicz (Ed.), Activity coefficients in electrolyte solutions (Vol. 1, pp. 157–208). Boca Raton: CRC.

    Google Scholar 

  • Pitzer, K. S. (1991). Activity coefficients in electrolyte solutions (2nd ed.). Boca Raton: CRC.

    Google Scholar 

  • Pitzer, K. S., & Mayorga, G. (1973). Thermodynamics of electrolytes. II. activity and osmotic coefficients for strong electrolytes with one or both ions univalent. Journal of Physical Chemistry, 77, 2300–2308.

    Article  CAS  Google Scholar 

  • Plummer, L. N., Parkhurst, D. L., Fleming, G. W., & Dunkle, S. A. (1988). A computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines (pp. 310). U.S. Geological Survey Water-Resources Investigations Report 88-4153.

  • Purnama, A., Al-Barwani, H. H., & Al-Lawatia, M. (2003). Modeling dispersion of brine waste discharges from a coastal desalination plant. Desalination, 155, 41–47.

    Article  CAS  Google Scholar 

  • Rabadjieva, D., Tepavitcharova, S., Todorov, T., Dassenakis, M., Paraskevopoulou, V., & Petrov, M. (2009). Thermodynamic modeling of inorganic chemical speciation in river waters affected by mine water discharges. Euro-Asian Journal of Sustainable Energy Development Policy, 3, 15–25.

    Google Scholar 

  • Reed, D. T., Clark, S. B., & Linfeng, R. (Eds.) (1999). Actinide speciation in high ionic strength media: Experimental and modeling approaches to predicting actinide speciation and migration in the subsurface (pp. 278). Dordrecht: Kluwer.

    Google Scholar 

  • Riley, J. P., & Taylor, D. (1986). Chelating resins for the concentration of trace elements from sea water and their analytical use in conjunction with AAS. Analytica Chimica Acta, 40, 479–484.

    Article  Google Scholar 

  • Robinson, R. A., & Stokes, R. H. (1959). Electrolyte solutions (2nd ed.). London: Butterworths.

    Google Scholar 

  • Shumilin, E. N., Mironenko, M. V., Ryzhenko, B. M., & Grajeda Munoz, M. (2003). Speciation of trace elements in brines from the concentration ponds of Exportadora del Sal, Guerrero Negro, Baja California Sur, Mexico. Geochemistry International, 41(3), 295–304.

    Google Scholar 

  • Simkiss, K., & Taylor, M. G. (1995). Transport of metals across membranes. In A. Tessier, & D. R. Turner (Eds.), Metal speciation and bioavailability in aquatic systems. IUPAC Series on Analytical and Physical Chemistry of Environmental Systems (Vol. 3). Hoboken: Wiley.

    Google Scholar 

  • Sposito, G., & Traina, S. J. (1987). Ion-association model for highly saline, sodium chloride-dominated waters. Journal of Environmental Quality, 16(1), 80–85.

    Article  CAS  Google Scholar 

  • Tepavitcharova, S., Balarew, Chr., Rull, F., Rabadjieva, D., & Iliev, A. (2005). Raman spectroscopic studies of ion association in the Na+, Mg2+/Cl, SO\(_{4}^{2-}\)/H2O system. Journal of Raman Spectroscopy, 36(9), 891–897.

    Article  CAS  Google Scholar 

  • Wu, Y. C., & Hamer, W. J. (1980). Revised values of the osmotic coefficients and mean activity coefficients of sodium nitrate in water at 25°C. Journal of Physical and Chemical Reference Data, 9, 513.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefka Tepavitcharova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tepavitcharova, S., Todorov, T., Rabadjieva, D. et al. Chemical speciation in natural and brine sea waters. Environ Monit Assess 180, 217–227 (2011). https://doi.org/10.1007/s10661-010-1783-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-010-1783-y

Keywords

Navigation