Skip to main content
Log in

The solubility and behaviour of acid gases in the marine aerosol

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The following Henry's law constants (K H/mol2kg-2atm-1) for HNO3 and the hydrohalic acids have been evaluated from available partial pressure and other thermodynamic data from 0°–40°C, 1 atm total pressure: HNO 3 , 40°C–5.85×105; 30°C–1.50×106; 25°C–2.45×106; 20°C–4.04×106; 10°C–1.15×107; 0°C–3.41×107. HF, 40°C–3.2; 30°C–6.6; 25°C–9.61; 20°C–14.0; 10°C–32.0; 0°C–76. HCl, 40°C–4.66×105; 30°C–1.23×106; 25°C–2.04×106; 20°C–3.37×106; 10°C–9.71×106; 0°C–2.95×107. HBr, 40°C–2.5×108; 30°C–7.5×108; 25°C–1.32×109; 20°C–2.37×109; 10°C–8.10×109; 0°C–3.0×1010. HI, 40°C–5.2×108; 30°C–1.5×109; 25°C–2.5×109; 20°C–4.5×109; 10°C–1.5×1010; 0°C–5.0×1010. Simple equilibrium models suggest that HNO3, CH3SO3H and other acids up to 10x less soluble than HCl displace it from marine seasalt aerosols. HF is displaced preferentially to HCl by dissolved acidity at all relative humidities greater than about 80%, and should be entirely depleted in aged marine aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerlof, G. and Teare, J. W., 1937, Thermodynamics of concentrated aqueous solutions of hydrochloric acid, J. Am. Chem. Soc. 59, 1855–1868.

    Google Scholar 

  • Bates, S. J. and Kirschman, H. D. 1919, The vapour pressures and free energies of the hydrogen halides in aqueous solution; the free energy of formation of hydrogen chloride, J. Am. Chem. Soc. 41, 1991–2001.

    Google Scholar 

  • Bates, T. S. and Gammon, R. M., 1986, Oceanic dimethyl sulphide and the global atmospheric sulphur cycle, Trans. Am. Geophys. Union 66, 1309.

    Google Scholar 

  • Blanchard, D. C., 1985, The oceanic production of atmospheric sea salt, J. Geophys. Res. 90, 961–963.

    Google Scholar 

  • Blanchard, D. C. and Woodcock, A. H., 1980, The production, concentration and vertical distribution of the seasalt aerosol, Ann. New York Acad. Sci. 338, 330–347.

    Google Scholar 

  • ten Brink, H. M., Mallant, R. K. A. M., Kos, G. P. A., Gouman, J. M., and van der Vate, J. F., 1982, SO2 conversion in the marine atmosphere, in B. Versino and H. Ott (eds.), Physico-chemical Behaviour of Atmospheric Pollutants, D. Reidel, Dordrecht.

    Google Scholar 

  • Brosheer, J. C., Lenfesty, F. A., and Elmore, K. L., 1947, Vapour pressure of hydrofluoric acid solutions, Ind. Eng. Chem. 38, 423–427.

    Google Scholar 

  • Cadle, R. D., 1980, A comparison of volcanic with other fluxes of atmospheric trace gas constituents, Rev. Geophys. Space Phys. 18, 746–752.

    Google Scholar 

  • Cerquetti, A., Longhi, P., and Mussini, T., 1968, Thermodynamics of aqueous hydrochloric acid from EMF's of hydrogen-chlorine cells, J. Chem. Eng. Data 13, 458–461.

    Google Scholar 

  • Chesselet, R., Morelli, J., and Buat-Menard, P., 1972, Some aspects of the geochemistry of marine aerosols, in D. Dyrrsen and D. Jagner (eds.), The Changing Chemistry of the Oceans, Wiley, London.

    Google Scholar 

  • Clegg, S. L. and Brimblecombe, P., 1985a, The Henry's law constant of methanesulphonic acid and its implications for atmospheric chemistry, Env. Tech. Lett. 6, 269–278.

    Google Scholar 

  • Clegg, S. L. and Brimblecombe, P., 1985b, Potential degassing of HCl from acidified sodium chloride droplets, Atmos. Environ. 19, 465–470.

    Google Scholar 

  • Clegg, S. L. and Brimblecombe, P., 1986, The dissociation constant and Henry's law constant of HCl in aqueous solution, Atmos. Environ. 20, 2483–2485.

    Google Scholar 

  • Clegg, S. L. and Brimblecombe, P., 1987a, Equilibrium partial pressures of strong acids over concentrated saline solutions. Part I. HNO3, Atmos. Environ. 22, 91–100.

    Google Scholar 

  • Clegg, S. L. and Brimblecombe, P., 1987b, Equilibrium partial pressures of strong acids over concentrated saline solutions, Part II. HCl, Atmos. Environ. 22, 117–129.

    Google Scholar 

  • Clegg, S. L. and Brimblecombe, P., 1988, Hydrofluoric and hydrochloric acid behaviour in concentrated saline solutions, J. Chem. Soc. Dalton Trans., 705–710.

  • Covington, A. K., Robinson, R. A., and Thompson, R., 1973, Osmotic and activity coefficients of methanesulphonic acid, J. Chem. Eng. Data 18, 422–423.

    Google Scholar 

  • Davis, W. and DeBruin, H. J., 1964, New activity coefficients of 0–100 per cent aqueous nitric acid, J. Inorg. Nucl. Chem. 26, 1069–1083.

    Google Scholar 

  • Denbigh, K., 1971, The Principles of Chemical Equilibrium, 3rd edn., CUP, Cambridge.

    Google Scholar 

  • Dobson, H. J. E. and Masson, I., 1924, The activity of water in hydrochloric acid, J. Chem. Soc. 125, 668–676.

    Google Scholar 

  • Dunn, J. S. and Rideal, E. K., 1924, The vapour pressure of hydrochloric acid, J. Chem. Soc. 125, 676–684.

    Google Scholar 

  • Eriksson, E., 1960, The yearly circulation of chloride and sulphur in nature, meteorological, geochemical and pedological implications, Part 2, Tellus 12, 63–109.

    Google Scholar 

  • Fredenhagen, K. and Wellman, M., 1932, Verteilungszahlen des Fluorwassererstoffs über dem Zweistoffsystem [H2O−HF] bei 25°C und die Siedepunktskurve dieses Systems bei Atmosphärendruck, Z. Phys. Chem. A162, 454–466.

    Google Scholar 

  • Freier, R. K., 1978, Aqueous Solutions, Vol. 2, Walter de Gruyter, Berlin.

    Google Scholar 

  • Fritz, J. J. and Fuget, C. R., 1956, Vapour pressure of aqueous hydrogen chloride solutions, 0° to 50°C, Chem. Eng. Data Ser. 1, No. 1, 10–12.

    Google Scholar 

  • Haase, R., Naas, H., and Thumm, H., 1963, The thermodynamic behaviour of concentrated hydrohalic acids, Z. Physik. Chem. (Frankfurt) 37, 210–229 (in German).

    Google Scholar 

  • Haase, R., Ducker, K. H., and Kuppers, H. A., 1965, Aktivitätskoeffizienten und Dissociationskonstanten waßriger Salpetersaure and Überchlorsaure, Ber. Bunsenges. Phys. Chem. 69, 98–110.

    Google Scholar 

  • Hala, E., Wichterle, I., Polak, J., and Boublik, T. 1968, Vapour-Liquid Equilibrium Data at Normal Pressures, Pergamon, London.

    Google Scholar 

  • Hamer, W. J. and Wu, Y.-C. 1970, The activity coefficients of hydrofluoric acid in water from 0 to 35°C, J. Res. Nat. Bur. Stand. 74A, 761–768.

    Google Scholar 

  • Hamer, W. J. and Wu, Yung-Chi, 1972, Osmotic coefficients and mean activity coefficients of uniunivalent electrolytes in water at 25°C, J. Phys. Chem. Ref. Data 1, 1047–1099.

    Google Scholar 

  • Harned, H. S. and Owen, B. B., 1958, The Physical Chemistry of Electrolyte Solutions, Reinhold, New York.

    Google Scholar 

  • Harvie, C. E., Moller, N., and Weare, J. H., 1984, The prediction of mineral solubilities in natural waters: the Na−K−Mg−Ca−H−Cl−SO4−OH−HCO3−CO3−CO2−H2O system to high ionic strengths at 25°C, Geochim. Cosmochim. Acta 48, 723–751.

    Google Scholar 

  • Harvie, C. E. and Weare, J. H., 1980, The prediction of mineral solubilities in natural waters: the Na−K−Mg−Ca−Cl−SO4−H2O system from zero to high concentration at 25°C, Geochim. Cosmochim. Acta 44, 981–997.

    Google Scholar 

  • Hawkins, J. E., 1932, The activity coefficients of hydrochloric acid in uni-univalent solutions at constant total molality, J. Am. Chem. Soc. 54, 4481–4487.

    Google Scholar 

  • Ionin, M. V. and Kurina, N. V., 1964, Determination of average activity coefficients and osmotic coefficients of HCl in concentrated solutions, Tr. po Khim. i Khim. Tekhnol. 1964 (1), 40–42 (in Russian).

    Google Scholar 

  • Keene, W. C. and Galloway, 1986, Considerations regarding natural sources for formic and acetic acids in the troposphere, J. Geophys. Res. 91, 14466–14474.

    Google Scholar 

  • Kelly, T. J., Stedman, D. H., Ritter, J. A., and Harvey, R. B., 1980, Measurements of oxides of nitrogen and nitric acid in clean air, J. Geophys. Res. 85, 7417–7425.

    Google Scholar 

  • Martens, C. S., Wesolowski, J. J., Hariss, J. J., and Kaifer, R., 1973, Chlorine loss from Puerto Rican and San Francisco Bay area aerosols, J. Geophys. Res. 78, 8778–8791.

    Google Scholar 

  • Millero, F. J., 1982, Use of models to determine ionic interactions in natural waters, Thalassia Jugoslavica 18, 253–291.

    Google Scholar 

  • Millero, F. J., 1983, The estimation of pKHA * of acids in seawater using the Pitzer equations, Geochim. Cosmochim. Acta 47, 2121–2129.

    Google Scholar 

  • Munter, P. A., Aepli, O. T., and Kossatz, R. A., 1949, Partial pressure measurements on the system hydrogen fluoride-water, Ind. Eng. Chem. 41, 1504–1508.

    Google Scholar 

  • Perez, Fiz. F. and Fraga, F., 1987, Association constant of fluoride and hydrogen ions in seawater, Mar. Chem. 21, 161–168.

    Google Scholar 

  • Perry, J. (ed.), 1963, Chemical Engineers Handbook, McGraw-Hill, New York.

    Google Scholar 

  • Pitzer, K. S., 1973, Thermodynamics of electrolytes I: Theoretical basis and general equations, J. Phys. Chem. 77, 268–277.

    Google Scholar 

  • Pitzer, K. S., 1979, Theory: ion interaction approach, in R. M. Pytkowicz (ed.), Activity Coefficients in Electrolyte Solutions, Vol. I, CRC Press, Boca Raton, Florida, pp. 209–265.

    Google Scholar 

  • Pitzer, K. S. and Mayorga, G., 1973, Thermodynamics of electrolytes II: activity coefficients and osmotic coefficients for strong electrolytes with one or both ions univalent, J. Phys. Chem. 77, 2300–2308.

    Google Scholar 

  • Pitzer, K. S., Roy, R. N., and Silvester, L. F. 1977, Thermodynamic of electrolytes 7. Sulphuric acid, J. Am. Chem. Soc. 99, 4930–4936.

    Google Scholar 

  • Potier, A., 1956, Thermodynamic properties of the system nitric acid-water and of the system dinitrogen tetroxide-nitric acid, Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci. Phys. 20, 1–98.

    Google Scholar 

  • Robinson, R. A. and Stokes, R. H., 1959, Electrolyte Solutions, Butterworths, London.

    Google Scholar 

  • Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., 1961, Selected Values of Chemical Thermodynamic Properties, Part I, Tables, NBS Circular 500, US Govt. Printing Office, Washington.

    Google Scholar 

  • Schwartz, S. E. and White, W. H., 1981, Solubility equilibria of the nitrogen oxides and oxyacids in dilute aqueous solution, in J. R. Pfafflin and E. N. Ziegler (eds.), Advances in Environmental Science and Engineering, Vol. 4, Gordon and Breach, New York.

    Google Scholar 

  • Stelson, A. W., Freidlander, S. K., and Seinfeld, J. H., 1979, A note on the equilibrium relationship between ammonia and nitric acid and particulate ammonium nitrate, Atmos. Environ. 13, 369–371.

    Google Scholar 

  • Stumm, W. and Morgan, J. J., 1981, Aquatic Chemistry, Wiley, New York.

    Google Scholar 

  • Stull, D. R. and Prophet, H., 1971, JANAF Thermochemical Tables, 2nd edn., NSRDS-NBS-37, US Govt. Printing Office, Washington.

    Google Scholar 

  • Tang, I. N., Munkelwitz, H. R., and Lee, J. H., 1983, Equilibrium partial pressures of nitric acid and water vapour over dilute aqueous solutions at 25°C, Preprint Extended Abstract, Brookhaven National Laboratory, BNL-33412.

  • Tanner, R. L., 1982, An ambient experimental study of phase equilibrium in the atmospheric system: aerosol H+, NH4 +, SO4 2-, NO3 -−NH3(g), HNO3(g), Atmos. Environ. 16, 2935–2942.

    Google Scholar 

  • Vandoni, M. R. and Laudy, M., 1952, Mesure de tensions de vapeur partielles des melanges NO3H−H2O a 20°C et verification de l'equation de Margules-Duhem, J. Chim. Phys. 49, 99–108.

    Google Scholar 

  • Vierkorn-Rudolph, B., Bachman, K., Schwarz, B., and Meixner, F. X., 1984, Vertical profiles of HCl in the troposphere, J. Atmos. Chem. 2, 47–63.

    Google Scholar 

  • Washburn, E. W. (ed.), 1926, International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, McGraw-Hill, New York.

    Google Scholar 

  • Whitfield, M., 1975, The extension of chemical models for seawater to include trace components at 25°C and one atmosphere pressure, Geochim. Cosmochim. Acta 39, 1545–1557.

    Google Scholar 

  • Wilkniss, P. E. and Bressan, D. J., 1971, Chemical processes at the air sea interface: the behaviour of fluorine, J. Geophys. Res. 76, 736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brimblecombe, P., Clegg, S.L. The solubility and behaviour of acid gases in the marine aerosol. J Atmos Chem 7, 1–18 (1988). https://doi.org/10.1007/BF00048251

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048251

Key words

Navigation