Skip to main content
Log in

Can We Hear the Echos of Cracks?

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The detection of cracks in mechanical engineering is mainly based on ultrasonic testing and Foucault currents. But even if they are efficient tools, this technology requires an important handling and is limited to the detection of cracks which are close to the source. Recently, several searchers have discussed the possibility of using waves as Lamb waves, for thin plates and shells, but also Love waves for bimaterials. In both cases the structure works as a wave guide and enables a long range propagation which is a promising possibility for detecting a crack quite far from the source. In this paper, we discuss the observability property of a small crack inside an open set using Love waves (the goal is to detect the beginning of the growth). It is proved that an adapted selection of these waves is necessary in order to avoid a black out which can occur for particular frequencies. This phenomenon is due to the fact that the crack has two extremities which can cancel their influence in a detection criterion. The main contribution of this paper is to discuss this point from a mathematical point of view, using an energy criterion requiring measurements quite far from the defect which should be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Avila-Pozos, O., Mishuris, G., Movchan, A.: Bloch-Floquet waves and localisation within a heterogeneous waveguides with long cracks. Contin. Mech. Thermodyn. 22, 545–553 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Blum, H., Dobrowolski, M.: On finite element methods for elliptic equations on domains with corners. Computing 28, 53–63 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Destuynder, Ph., Djaoua, M.: Sur une interpretation mathématique de l’intégrale de Rice en mécanique de la rupture fragile. Math. Methods Appl. Sci. 3, 70–87 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Destuynder, Ph., Fabre, C.: Singularities occurring in multimaterials with transparent boundary conditions. Q. Appl. Math. 3, 443–463 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Destuynder, Ph., Fabre, C.: Few remarks on the use of Love waves in non destructive testing. Discrete Contin. Dyn. Syst., Ser. S 9, 427–444 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dobrowolski, M.: Numerical Approximation of Elliptic Interface and Corner Problems. Habilitationsschrift, Bonn (1981)

    Google Scholar 

  7. Dumont-Fillon, J-C.: Contrôle non destructif par les ondes de Love et Lamb. Editions Techniques de l’ingénieur (2012)

  8. Dunford, N., Schwartz, J.T.: Linear Operators, Part 1: General Theory. Wiley Classic Library. Wiley New York (1988)

    MATH  Google Scholar 

  9. Friedman, A., Vogelius, M.: Determining cracks by boundary measurements. Indiana Univ. Math. J. 38, 527–556 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Galvagni, A., Cawley, P.: The reflection of guided waves from simple supports in pipes. J. Acoust. Soc. Am. 129, 1869–1880 (2011)

    Article  ADS  Google Scholar 

  11. Grisvard, P.: Singularity in Domains with Corner. Pitman, London (1988)

    Google Scholar 

  12. Holmgrem, E.: Über Systeme von linearen partiellen Differentialgleichungen. Öfvers. K. Vetensk.-Akad. Förh., vol. 58, pp. 91–103 (1901)

    Google Scholar 

  13. Hutchinson, J.W., Mear, M.E., Rice, J.R.: Cracks paralleling an interface between dissimilar materials. J. Appl. Mech. 109, 828–832 (1987)

    Article  Google Scholar 

  14. Kato, I.: Spectral Theory of Linear Operators. Springer, Berlin (1966)

    Google Scholar 

  15. Lions, J.L., Magenès, E.: Problèmes aux limites non homogènes, T.1. Dunod, Paris (1968)

    MATH  Google Scholar 

  16. Lowe, M.J.S.: In: Thompson, D.O., Chimenti, D.E. (eds.) Characteristics of the Reflection of Lamb Waves from Defects in Plates and Pipes. Review of Progress in Quantitative NDE, vol. 17, pp. 113–120. Plenum, New York (2002)

    Google Scholar 

  17. Marty, P.M.: Modelling of ultrasonic guided wave field generated by piezoelectric transducers. Thesis at Imperial College of Science, Technology and Medicine, University of London (2002). http://www3.imperial.ac.uk/pls/portallive/docs/1/50545711.PDF

  18. Necas, J.: Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1965)

    MATH  Google Scholar 

  19. Raviart, P.A., Thomas, J.M.: Approximation des équations aux dérivées partielles. Masson, Paris (1986)

    Google Scholar 

  20. Ribichini, R., Cegla, F., Nagy, P., Cawley, P.: Study and comparison of different EMAT configurations for SH wave inspection. IEEE Trans. UFFC 58, 2571–2581 (2011)

    Article  Google Scholar 

  21. Rice, J.R.: A path-independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  ADS  Google Scholar 

  22. Rice, J.R.: Two general integrals of singular crack tip deformation fields. J. Elast. 20(2), 131–142 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Destuynder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Destuynder, P., Fabre, C. Can We Hear the Echos of Cracks?. J Elast 130, 25–58 (2018). https://doi.org/10.1007/s10659-017-9632-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-017-9632-7

Keywords

Mathematics Subject Classification

Navigation