Skip to main content
Log in

An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves

  • Original Paper
  • Published:
Journal of Civil Structural Health Monitoring Aims and scope Submit manuscript

Abstract

We propose a structural health monitoring (SHM) paradigm based on the simultaneous use of ultrasounds and electromechanical impedance (EMI) to monitor waveguides. Methods based on the propagation of guided ultrasonic waves (GUWs) are increasingly used in all those SHM applications that benefit from built-in transduction, moderately large inspection ranges, and high sensitivity to small flaws. Meantime, impedance-based SHM promises to adequately assess locally the structural integrity of simple waveguides and complex structures such as bolted connections. As both methods utilize piezoelectric transducers bonded or embedded to the structure of interest, this paper describes a unified SHM paradigm where pulse-echo and pitch-catch GUWs as well as EMI are employed simultaneously and are driven by the same sensing/hardware/software. We assess the feasibility of this unified system by monitoring a large flat aluminum plate with two transducers. Damage is simulated by adding small masses to the plate. The results demonstrate that the proposed system is robust and can be developed further to address the challenges associated with the SHM of complex structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adams D (2007) Health monitoring of structural materials and components: methods with applications. Wiley, Hoboken, NJ

    Book  Google Scholar 

  2. Giurgiutiu V (2007) Structural health monitoring: with piezoelectric wafer active sensors. Academic Press, Waltham, MA

    Google Scholar 

  3. Balageas D, Fritzen CP, Güemes A (2010) Structural health monitoring. Wiley, Hoboken, NJ

    Google Scholar 

  4. Farrar CR, Worden K (2012) Structural health monitoring: a machine learning perspective. Wiley, Hoboken, NJ

    Book  Google Scholar 

  5. Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press, Cambridge

    Google Scholar 

  6. Alleyne DN, Cawley P (1992) The interaction of Lamb waves with defects. IEEE Trans Ultrason Ferroelectr Freq Control 39(3):381–397. doi:10.1109/58.143172

    Article  Google Scholar 

  7. Rizzo P, Lanza di Scalea F (2007) Wavelet-based unsupervised and supervised learning algorithms for ultrasonic structural monitoring of waveguides. In: Reece PL (ed) Progress in smart materials and structures research, Chap 8. NOVA publishers, pp 227–290. ISBN: 1-60021-106-2

  8. Giurgiutiu V (2005) Tuned lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring. J Int Mater Syst Struct 16(4):291–305. doi:10.1177/1045389X05050106

    Article  Google Scholar 

  9. Rizzo P, Lanza di Scalea F (2005) Ultrasonic inspection of multi-wire steel strands with the aid of the wavelet transform. Smart Mater Struct 14(4):685–695. doi:10.1088/0964-1726/14/4/027

    Article  Google Scholar 

  10. Su Z, Ye L, Lu Y (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vibrat 295(3):753–780. doi:10.1016/j.jsv.2006.01.020

    Article  Google Scholar 

  11. Raghavan A, Cesnik CES (2007) Review of guided-wave structural health monitoring. Shock Vibrat Digest 39(2):91–114. doi:10.1177/0583102406075428

    Article  Google Scholar 

  12. Park G, Sohn H, Farrar CR, Inman DJ (2003) Overview of piezoelectric impedance-based health monitoring and path forward. Shock Vibrat Digest 35(6):451–463

    Article  Google Scholar 

  13. Peairs DM, Park G, Inman DJ (2004) Improving accessibility of the impedance-based structural health monitoring method. J Int Mater Syst Struct 15(2):129–139. doi:10.1177/1045389X04039914

    Article  Google Scholar 

  14. Bhalla S, Soh CK (2012) Electro-mechanical impedance technique. Smart materials in structural health monitoring, control and biomechanics. Springer, Berlin, pp 17–51

    Chapter  Google Scholar 

  15. Castaings M (1996) The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers. J Acoust Soc Am 100(5):3070–3077. doi:10.1121/1.417193

    Article  Google Scholar 

  16. Scudder LP, Hutchins DA, Guo NGN (1996) Laser-generated ultrasonic guided waves in fiber-reinforced plates-theory and experiment. IEEE Trans Ultrason Ferroelectr Freq Control 43(5):870–880. doi:10.1109/58.535489

    Article  Google Scholar 

  17. Achenbach JD (2000) Quantitative nondestructive evaluation. Int J Solids Struct 37(1–2):13–27. doi:10.1016/S0020-7683(99)00074-8

    Article  MATH  MathSciNet  Google Scholar 

  18. Laguerre L, Aime JC, Brissaud M (2002) Magnetostrictive pulse-echo device for non-destructive evaluation of cylindrical steel materials using longitudinal guided waves. Ultrasonics 39(7):503–514. doi:10.1016/S0041-624X(01)00088-9

    Article  Google Scholar 

  19. Sale M, Rizzo P, Marzani A (2011) Semi-analytical formulation for the guided waves-based reconstruction of elastic moduli. Mech Sys Signal Process 25(6):2241–2256

    Article  Google Scholar 

  20. Rizzo P, Han J, Ni X (2012) Structural health monitoring of immersed structures by means of guided ultrasonic waves. J Int Mater Syst Struct 21(14):1397–1407. doi:10.1177/1045389X10384170

    Article  Google Scholar 

  21. Giurgiutiu V, Bao J, Zhao W (2003) Piezoelectric wafer active sensor embedded ultrasonics in beams and plates. Exp Mech 43(4):428–449. doi:10.1007/BF02411348

    Article  Google Scholar 

  22. Zhu XQ, Hao H, Fan QK (2013) Detection of delamination between steel bars and concrete using embedded piezoelectric actuators/sensors. J Civil Struct Health Monit 3(2):105–115

    Article  Google Scholar 

  23. Zhu X, Rizzo P (2014) Sensors array for the health monitoring of truss structures by means of guided ultrasonic waves. J Civ Struct Health Monit 4(3):221–234. doi:10.1007/s13349-014-0078-3

    Article  Google Scholar 

  24. Giurgiutiu V, Santoni-Bottai G (2011) Structural health monitoring of composite structures with piezoelectric-wafer active sensors. AIAA J 49(3):565–581

    Article  Google Scholar 

  25. Zhu X, Rizzo P (2012) A unified approach for the structural health monitoring of waveguides. Struct Health Monit 11(6):629–642. doi:10.1177/1475921712438569

    Article  Google Scholar 

  26. Wang Q, Wang CM (2000) Optimal placement and size of piezoelectric patches on beams from the controllability perspective. Smart Mater Struct 9(4):558–567. doi:10.1088/0964-1726/9/4/320

    Article  Google Scholar 

  27. Baptista FG, Filho JV, Inman DJ (2011) Sizing PZT transducers in impedance-based structural health monitoring. IEEE Sens J 11(6):1405–1414. doi:10.1109/JSEN.2010.2098865

    Article  Google Scholar 

  28. Bhalla S, Soh CK (2004) Electromechanical impedance modeling for adhesively bonded piezo-transducers. J Int Mater Syst Struct 15(12):955–972. doi:10.1177/1045389X04046309

    Article  Google Scholar 

  29. Park G, Inman DJ (2007) Structural health monitoring using piezoelectric impedance measurements. Philos Trans Ser A Math Phys Eng Sci 365(1851):373–392. doi:10.1098/rsta.2006.1934

    Article  Google Scholar 

  30. Koo KY, Park S, Lee JJ, Yun CB (2009) Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects. J Int Mater Syst Struct 20(4):367–377. doi:10.1177/1045389X08088664

    Article  Google Scholar 

  31. Li Y, Jiang Z, Chonan S, Feng G, Wen B (1998) Impedance-based technique and wave propagation measurement for non-destructive evaluation. In: Proceedings of international conference on vibration engineering, Dalian, China, pp 476–481

  32. Kabeya K, Jiang Z, Cudney HH (1998) Structural health monitoring by impedance and wave propagation measurement. In: Proceedings of international motion and vibration control, ETH Zurich, Switzerland

  33. Jiang Z, Kabeya K, Chonan S (1999) Longitudinal wave propagation measuring technique for structural health monitoring. In: Symposium on Smart Structures and Materials, Newport Beach, CA, pp 343–350

  34. Giurgiutiu V, Zagrai A, Jing Bao J (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monit 1(1):41–61. doi:10.1177/147592170200100104

    Article  Google Scholar 

  35. Park S, Lee JJ, Yun CB, Inman DJ (2007) A built-in active sensing system-based structural health monitoring technique using statistical pattern recognition. J Mech Sci Technol 21(6):896–902. doi:10.1007/BF03027065

    Article  Google Scholar 

  36. Park S, Inman DJ, Lee JJ, Yun CB (2008) Piezoelectric sensor-based health monitoring of railroad tracks using a two-step support vector machine classifier. J Infrastruct Syst 14(1):80–88. doi:10.1061/(ASCE)1076-0342(2008)14:1(80)

    Article  Google Scholar 

  37. Zagrai A, Doyle D, Gigineishvili V, Brown J, Gardenier H, Arritt B (2010) Piezoelectric wafer active sensor structural health monitoring of space structures. J Int Mater Syst Struct 21(9):921–940. doi:10.1177/1045389X10369850

    Article  Google Scholar 

  38. An YK, Sohn H (2011) Integrated impedance and guided wave based damage detection under temperature variation. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, pp 79811Q–79811Q

  39. Cuc A, Giurgiutiu V, Joshi S, Tidwell Z (2007) Structural health monitoring with piezoelectric wafer active sensors for space applications. AIAA J 45(12):2838–2850

    Article  Google Scholar 

  40. Sharif Khodaei Z, Ghajari M, Aliabadi MH, Apicella A (2013) SMART platform for structural health monitoring of sensorised stiffened composite panels. Key Eng Mater 525:581–584

    Google Scholar 

  41. Yang M, Qiao P (2005) Modeling and experimental detection of damage in various materials using the pulse-echo method and piezoelectric sensors/actuators. Smart Mater Struct 14(6):1083–1100. doi:10.1088/0964-1726/14/6/001

    Article  Google Scholar 

  42. Raghavan A, Cesnik CES (2007) Guided-wave signal processing using chirplet matching pursuits and mode correlation for structural health monitoring. Smart Mater Struct 16(2):355–366. doi:10.1088/0964-1726/16/2/014

    Article  Google Scholar 

  43. Shen Y, Giurgiutiu V (2014) WaveFormRevealer: an analytical framework and predictive tool for the simulation of multi-modal guided wave propagation and interaction with damage. Struct Health Monit 13(3):1–21. doi:10.1177/1475921714532986

    Google Scholar 

  44. An YK, Sohn H (2012) Integrated impedance and guided wave based damage detection. Mech Syst Signal Proc 28:50–62. doi:10.1016/j.ymssp.2011.11.016

    Article  Google Scholar 

  45. An YK, Kim MK, Sohn H (2012) Airplane hot spot monitoring using integrated impedance and guided wave measurements. Struct Control Health Monit 19(7):592–604. doi:10.1002/stc.1493

    Article  Google Scholar 

  46. Park HJ, Sohn H, Yun CB, Chung J, Lee MM (2012) Wireless guided wave and impedance measurement using laser and piezoelectric transducers. Smart Mater Struct 21(3):035029. doi:10.1088/0964-1726/21/3/035029

    Article  Google Scholar 

  47. Providakis CP, Stefanaki KD, Voutetaki ME Tsompanakis Y, Stavroulaki M (2013) Damage detection in concrete structures using a simultaneously activated multi-mode PZT active sensing system: numerical modelling. Struct Infrastruct Eng, 1–18. Doi: 10.1080/15732479.2013.831908

  48. Moll J, Fritzen C (2010) Advanced aspects of mode-selective excitation of ultrasonic guided waves. In: 24th Conference on Noise and Vibration Engineering, Leuven, Belgium, pp 969–984

  49. Shelke A, Kundu T, Amjad U, Hahn K, Grill W (2011) Mode-selective excitation and detection of ultrasonic guided waves for delamination detection in laminated aluminum plates. IEEE Trans Ultrason Ferroelectr Freq Control 58(3):567–577. doi:10.1109/TUFFC.2011.1839

    Article  Google Scholar 

  50. Quaegebeur N, Masson P, Micheau P, Mrad N (2012) Broadband generation of ultrasonic guided waves using piezoceramics and sub-band decomposition. IEEE Trans Ultrason Ferroelectr Freq Control 59(5):928–938. doi:10.1109/TUFFC.2012.2277

    Article  Google Scholar 

  51. Michaels JE, Lee SJ, Hall JS, Michaels TE (2011) Multi-mode and multi-frequency guided wave imaging via chirp excitations. In: Proceeding of SPIE Conference on Health Monitoring of Structural and Biological Systems, San Diego, CA, pp 79840I–79840I

  52. Michaels TE, Michaels JE, Lee SJ, Chen X (2011) Chirp generated acoustic wavefield images. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, pp 79840J–79840J

  53. Michaels JE, Lee SJ, Croxford AJ, Wilcox PD (2013) Chirp excitation of ultrasonic guided waves. Ultrasonics 53(1):265–270. doi:10.1016/j.ultras.2012.06.010

    Article  Google Scholar 

  54. Zeng L, Lin J (2014) Chirp-based dispersion pre-compensation for high resolution Lamb wave inspection. NDT&E Int 61:35–44. doi:10.1016/j.ndteint.2013.09.008

    Article  Google Scholar 

  55. Xu B, Giurgiutiu V (2005) A low-cost and field portable electromechanical (E/M) impedance analyzer for active structural health monitoring. In: Paper presented at 5th International Work Structural Health Monitoring, Stanford University, Stanford, CA, 15–17 Sept 2005

  56. Baptista FG, Filho JV (2009) A new impedance measurement system for PZT-based structural health monitoring. IEEE Trans Instrum Meas 58(10):3602–3608. doi:10.1109/TIM.2009.2018693

    Article  Google Scholar 

  57. Liang C, Sun FP, Rogers CA (1994) An impedance method for dynamic analysis of active material systems. J Vib Acoust 116(1):120–128. doi:10.1115/1.2930387

    Article  Google Scholar 

  58. Zhou S, Liang C, Rogers CA (1995) Integration and design of piezoceramic elements in intelligent structures. J Int Mater Syst Struct 6(6):733–743. doi:10.1177/1045389X9500600601

    Article  Google Scholar 

  59. Annamdas VGM, Soh CK (2007) Three-dimensional electromechanical impedance model I: formulation of directional sum impedance. J Aerosp Eng 20(1):53–62. doi:10.1061/(ASCE)0893-1321(2007)20:1(53)

    Article  Google Scholar 

  60. Yu L, Giurgiutiu V (2005) Advanced signal processing for enhanced damage detection with piezoelectric wafer active sensors. Smart Struct Syst 1(2):185–215

    Article  Google Scholar 

  61. Attarian V, Cegla F, Cawley P (2014) Long-term stability of guided wave structural health monitoring using distributed adhesively bonded piezoelectric transducers. Struct Health Monit 13:265–280. doi:10.1177/1475921714522842

    Article  Google Scholar 

  62. Baptista F, Budoya D, Almeida V, Ulson J (2014) An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring. Sensors 14(1):1208–1227. doi:10.3390/s140101208

    Article  Google Scholar 

  63. Park G, Kabeya K, Cudney HH, Inman DJ (1992) Impedance-based structural health monitoring for temperature varying applications. JSME Int J Ser A 42(2):249–258

    Article  Google Scholar 

  64. Giurgiutiu V, Reynolds A, Rogers CA (1999) Experimental investigation of E/M impedance health monitoring for spot-welded structural joints. J Int Mater Syst Struct 10(10):802–812. doi:10.1106/N0J5-6UJ2-W1GV-Q8MC

    Article  Google Scholar 

  65. Li YK (1967) Probabilistic theory of structural dynamics. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by the US National Science Foundation grant (CMMI 1029457). The first and the last authors performed this research as visiting scholars at the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piervincenzo Rizzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulizzi, V., Rizzo, P., Milazzo, A. et al. An integrated structural health monitoring system based on electromechanical impedance and guided ultrasonic waves. J Civil Struct Health Monit 5, 337–352 (2015). https://doi.org/10.1007/s13349-015-0112-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13349-015-0112-0

Keywords

Navigation