Skip to main content
Log in

Histological observation of cucumber infected with Corynespora cassiicola

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In this study, we compared differences between cucumber cultivars D9320 (highly resistant) and D0401 (highly susceptible) after Corynespora cassiicola infection. There were no differences in conidial germination or penetration between these cultivars. The germ tube rapidly elongated within 24 h after inoculation and invaded the cucumber leaf tissue directly or via stomata 24 h after inoculation (hai). The hypersensitive response (HR) was observed using in vitro inoculation and the trypan blue staining method. Necrotic spots occurred only in the resistant cucumber cultivar D9320 in vitro inoculation. The water-soaked lesion appeared in D0401. The HR was observed earlier and stronger in D9320 than in D0401 in the light microscope. The phenomenon of hypersensitive cell death could be earlier observed by using light microscope. The accumulation of H2O2, lignin and callose was observed in D9320 and D0401 infected with C. cassiicola. The order of accumulation was H2O2, lignin, and then callose. H2O2, lignin and callose accumulation in D9320 occurred earlier and stronger than in D0401. The pattern of callose accumulation in D0401 was different from that of H2O2 and lignin. The intensity of the accumulation did not change over time in D0401. Consistent with lignin and callose accumulation, the expression levels of CsCALS and CsCCoAMT -increased earlier and were higher in the highly resistant D9320 cultivar than in the highly susceptible D0401 cultivar. The HR occurred after these accumulations. The amount of mycelium in D9320 was much lower than that in D0401 at 5 days post-infection (dpi). The HR plays a role in resisting infection of C. cassiicola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali, R., Ma, W., Lemtiri-Chlieh, F., Tsaltas, D., Leng, Q., von Bodman, S., et al. (2007). Death don’t have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel 2 and innate immunity. The Plant Cell, 19(3), 1081–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler, S., Young-Kelly, H., Raper, T., Cochran, A., Jordan, J., Shrestha, S., et al. (2016). First report of target spot caused by Corynespora cassiicola on cotton in Tennessee. Plant Disease, 100(2), 535.

    Article  Google Scholar 

  • Chen, Y., Zhang, S., Kang, Z., Han, Q., & Bai, Z. (2012). Accumulation and distribution of hydrogen peroxide in interaction between sugarbeet plant and sugarbeet necrotic yellow vein virus. Acta Agronomica Sinica, 38(5), 865–870.

    Article  CAS  Google Scholar 

  • Coll, N. S., Epple, P., & Dangl, J. L. (2011). Programmed cell death in the plant immune system. Cell Death and Differentiation, 18(8), 1247–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Wit, P. G. M. (1977). A light and scanning-electron microscopic study of infection of tomato plants by virulent and avirulent races of Cladosporium fulvum. Netherlands Journal of Plant Pathology, 83(3), 109–122.

    Article  Google Scholar 

  • Deepak, S. A., Ishii, H., & Park, P. (2006). Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Physiological and Molecular Plant Pathology, 69(1–3), 52–61.

    Article  CAS  Google Scholar 

  • Dixon, L. J., Schlub, R. L., Pernezny, K., & Datnoff, L. E. (2009). Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 99(9), 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  • Fang, D. C. H., & Fu, J. F. (1994). Occurrence and identification of cucumber target spot disease. Plant Protection, 20(3), 23–24.

    Google Scholar 

  • Fortunato, A. A., Debona, D., Bernardeli, A. M., & Rodrigues, F. Á. (2015). Changes in the antioxidant system in soybean leaves infected by Corynespora cassiicola. Phytopathology, 105(8), 1050–1058.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa, T., Ushiyama, K., & Kishi, K. (2008). Corynespora leaf spot of scarlet sage caused by Corynespora cassiicola. Journal of General Plant Pathology, 74(2), 117–119.

    Article  Google Scholar 

  • Heath, M. C. (1974). Light and electron microscope studies of the interactions of host and non-host plants with cowpea rust— Uromyces phaseoli Var. vignae. Physiological Plant Pathology, 4(4), 403–414.

    Article  Google Scholar 

  • Hong, J. K., & Hwang, B. K. (1998). Influence of inoculum density, wetness duration, plant age, inoculation method, and cultivar resistance on infection of pepper plants by Colletotrichum coccodes. Plant Disease, 82(10), 1079–1083.

    Article  Google Scholar 

  • Jones, J. D., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, M. K., Kang, B. R., Cho, B. H., & Kim, Y. C. (2003). Occurrence of target leaf spot disease caused by Corynespora cassicola on cucumber in Korea. Plant Pathology, 52(3), 424.

    Article  Google Scholar 

  • Lan, S. C., & Jiang, S. H. (2013). Change in the cell walls of plants on pathogen stress. Guizhou Science, 31(3), 17–24.

    Google Scholar 

  • Lan, G. B., He, Z. F., Luo, F. F., & Yu, H. (2012). Identification of resistance and occurence of cucumber target spot in Guangdong Province. China Vegetables, 11, 30–31.

    Google Scholar 

  • Lehmann, S., Serrano, M., L’Haridon, F., Tjamos, S. E., & Metraux, J. P. (2015). Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry, 112, 54–62.

    Article  CAS  PubMed  Google Scholar 

  • Li, B. J., Gao, W., Shi, Y. X., & Xie, X. W. (2012a). Progress in researches on Corynespora leaf spot. Acta Phytophylacica Sinica, 39(2), 171–176.

    CAS  Google Scholar 

  • Li, C., Deng, G., Yang, J., Viljoen, A., Jin, Y., Kuang, R., et al. (2012b). Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics, 13(1), 374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X. M., Qi, Y. X., Zhang, X., Xie, Y. X., Zhang, H., Wei, Y. X., et al. (2014a). Infection process of Corynespora cassiicola tagged with GFP on hevea brasiliensis. Australasian Plant Pathology, 43(5), 523–525.

    Article  Google Scholar 

  • Liu, J., Wang, L., Xing, Y., Liu, M., & Zhang, D. W. (2014b). Morphology structure of leaf epidermis of Maloideae in Heilongjiang. Journal of Chinese Electron Microscopy Society, 33(1), 69–76.

    CAS  Google Scholar 

  • Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., & Ton, J. (2011). Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions, 24(2), 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto, T., Ishii, H., Seko, T., Kobori, S., & Tomita, Y. (2009). Occurrence of Corynespora cassiicola isolates resistant to boscalid on cucumber in Ibaraki prefecture, Japan. Plant Pathology, 58(6), 1144–1151.

    Article  CAS  Google Scholar 

  • O’Brian, T. P., Feder, N., & McCully, M. E. (1964). Polychromatic staining of plant cell walls by toluidine blue. Protoplasma, 59(2), 73–367.

    Google Scholar 

  • Pastori, G. M., & Foyer, C. H. (2002). Common components, networks, and pathways of cross-tolerance to stress. The central role of "redox" and abscisic acid-mediated controls. Plant Physiology, 129(2), 460–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman, M. Z., Khanam, H., Ueno, M., Kihara, J., Honda, Y., & Arase, S. (2010). Suppression by red light irradiation of Corynespora leaf spot of cucumber caused by Corynespora cassiicola. Journal of Phytopathology, 158(5), 378–381.

    Article  Google Scholar 

  • Romero, D., Eugenia Rivera, M., Cazorla, F. M., Codina, J. C., Fernández-Ortuño, D., Torés, J. A., et al. (2008). Comparative histochemical analyses of oxidative burst and cell wall reinforcement in compatible and incompatible melon-powdery mildew (Podosphaera fusca) interactions. Journal of Plant Physiology, 165(18), 1895–1905.

    Article  CAS  PubMed  Google Scholar 

  • Sattler, S. E., & Funnell-Harris, D. L. (2013). Modifying lignin to improve bioenergy feedstocks: Strengthening the barrier against pathogens? Frontiers in Plant Science, 4, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, P., Deep, S., Bhati, D. S., Sharma, M., & Chowdappa, P. (2014). Penetration and infection processes of Alternaria brassicicola on cauliflower leaf and Alternaria brassicae on mustard leaf: A histopathological study. Plant Pathology Journal, 13(2), 100–111.

    Article  Google Scholar 

  • Shimomoto, Y., Sato, T., Hojo, H., Morita, Y., Takeuchi, S., Mizumoto, H., et al. (2011). Pathogenic and genetic variation among isolates of Corynespora cassiicola in Japan. Plant Pathology, 60(2), 253–260.

    Article  CAS  Google Scholar 

  • Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant Journal, 11(6), 1187–1194.

    Article  CAS  Google Scholar 

  • Torres, M. A., Jones, J. D., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141(2), 373–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, J. N., Ann, P. J., Cheng, H. F., Hsu, Z. H., & Huang, H. C. (2015). First report of Corynespora cassiicola causing leaf spot of papaya in Taiwan. Plant Disease, 99(11), 1649.

    Article  Google Scholar 

  • Vleeshouwers, V. G., van Dooijeweert, W., Govers, F., Kamoun, S., & Colon, L. T. (2000). The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta, 210(6), 853–864.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, A., Tobimatsu, Y., Phillips, L., Flint, H., Torr, K., Donaldson, L., et al. (2011). CCoAOMT suppression modifies lignin composition in Pinus radiata. The Plant Journal, 67(1), 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., El Hadrami, A., Adam, L. R., & Daayf, F. (2008). Differential activation and suppression of potato defence responses by Phytophthora infestans isolates representing US-1 and US-8 genotypes. Plant Pathology, 57(6), 1026–1037.

    Article  CAS  Google Scholar 

  • Wang, H. Z., Li, S. J., & Guan, W. (2010). Identification of resistance and genetic analysis of cucumber target spot. China Cucurbits and Vegetables, 1, 24–25.

    Google Scholar 

  • Wen, C., Mao, A., Dong, C., Liu, H., Yu, S., Guo, Y. D., et al. (2015). Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L. Theoretical and Applied Genetics, 128(12), 2495–2506.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S. J., Gu, X. F., Zhang, S. P., Miao, H., & Li, B. J. (2012). Research progress on cucumber target leaf spot (Corynespora cassiicola). China Vegetables, 4, 1–9.

    CAS  Google Scholar 

  • Zhang, H., Wang, C., Cheng, Y., Chen, X., Han, Q., Huang, L., et al. (2012). Histological and cytological characterization of adult plant resistance to wheat stripe rust. Plant Cell Reports, 31(12), 2121–2137.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K., Song, Y. P., Wang, Y., Li, K., Gao, L., Zhong, Y. K., et al. (2014a). Differential necrotic lesion formation in soybean cultivars in response to soybean mosaic virus. European Journal of Plant Pathology, 139(3), 525–534.

    Article  CAS  Google Scholar 

  • Zhang, Y. J., Liu, D., Ma, B. Z., Zhou, X. Y., & Miao, D. (2014b). Occurrence and identification of cucumber target spot in Heilongjiang Province. Journal of Northeast Agricultural University, 45(9), 1–7.

    Google Scholar 

  • Zhao, Q., & Dixon, R. A. (2011). Transcriptional networks for lignin biosynthesis: More complex than we thought? Trends in Plant Science, 16(4), 227–233.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, T., Liu, G., Li, S., Li, J., Jiang, J., Zhang, H., et al. (2015). Differentially expressed gene transcripts related to the Cf-19-mediated resistance response to Cladosporium fulvum infection in tomato. Physiological and Molecular Plant Pathology, 89, 8–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (31272158 and 31401863) and National Key Technology Support Program (2012BAD02B00). We thank the Tianjin Kerun Cucumber Research Institute for providing the isolate of Corynespora cassiicola.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwei Qin or Ming Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Qin, Z., Zhang, Y. et al. Histological observation of cucumber infected with Corynespora cassiicola . Eur J Plant Pathol 149, 455–466 (2017). https://doi.org/10.1007/s10658-017-1195-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1195-8

Keywords

Navigation