Skip to main content
Log in

Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L.

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The cucumber target leaf spot resistance gene cca - 3 was fine mapped in a 79-kb region harboring a CC-NB-ARC type R gene that may be responsible for the hypersensitive responses to infection of the target leaf spot pathogen in cucumber.

Abstract

The target leaf spot (TLS) is one of the most important foliar diseases in cucumber (Cucumis sativus L.). In this study, we conducted fine genetic mapping of a simply inherited recessive resistance gene, cca-3 against TLS with 193 F2:3 families and 890 F2 plants derived from the resistant cucumber inbred line D31 and the susceptible line D5. Initial mapping with microsatellite markers and bulked segregant analysis placed cca-3 in a 2.5-Mbp region of cucumber chromosome 6. The D5 and D31 lines were re-sequenced at 10× genome coverage to explore new markers in the target region. Genetic mapping in the large F2 population delimited the cca-3 locus in a 79-kb region with flanking markers Indel16874230 and Indel16953846. Additional fine mapping and gene annotation in this region revealed that a CC-NB-ARC type resistance gene analog, Csa6M375730, seems to be the candidate gene for cca-3. One single nucleotide polymorphism (SNP) was found in the NB-ARC domain of this candidate gene sequence between D31 and D5 that may lead to amino acid change, thus altering the function of the conserved NB-ARC motif. This SNP was validated in the segregating population as well as 24 independent cucumber lines. There was significantly higher level of cca-3 expression in the leaves of D5 (susceptible) than in D31 (resistant), and the expression level was positively correlated with the areas of necrotic spots on leaves after inoculation. It seems the cca-3 resistance gene was able to induce hypersensitive responses to the infection by TLS pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abul-Hayja Z, Williams PH, Peterson CE (1978) Inheritance of resistance to anthracnose and target leaf spot in cucumbers. Plant Dis Rep 62:43–45

    Google Scholar 

  • Amano M, Mochizuki A, Kawagoe Y, Iwahori K, Niwa K, Svoboda J, Maeda T, Imura Y (2013) High-resolution mapping of zym, a recessive gene for Zucchini yellow mosaic virus resistance in cucumber. Theor Appl Genet 126:2983–2993

    Article  CAS  PubMed  Google Scholar 

  • Blazquez CH (1967) Corynespora leaf spot of cucumber. Florida Agricultural Experiment Stations Journal Series, pp 177–182

  • Cavagnaro PF, Senalik DA, Mang L, Simon PW, Harkins TT, Kodira CD, Huang SW, Weng YQ (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569

    Article  PubMed Central  PubMed  Google Scholar 

  • Dixon LJ, Schlub RL, Perneznyet K, Datnoff LE (2009) Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology 99:1015–1027

    Article  CAS  PubMed  Google Scholar 

  • Ecke W, Kampouridis A, Ziese-Kubon K, Hirsch AC (2015) Identification and genetic characterization by high-throughput SNP analysis of intervarietal substitution lines of rapeseed (Brassica napus L.) with enhanced embryogenic potential. Theor Appl Genet 128:587–603

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129

    Google Scholar 

  • Fu HP, Wei J, Li SJ, Yang RH, Guan W, Wang HZ (2012) EST-SSR markers and artificial inoculation identification of leaf spot resistance in cucumber germplasm. Chin Hortic Abstract 2:1–3

    Google Scholar 

  • Furukawa T, Ushiyama K, Kishi K (2008) Target leaf spot of scarlet sage caused by Corynespora cassiicola. J Gen Plant Pathol 74:117–119

    Article  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WuZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber Cucumis sativus L. Nat Genet 41(12):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Ishii H, Yano K, Date H, Furuta A, Sagehashi Y, Yamaguchi T, Sugiyama T, Nishimura K, Hasama W (2007) Molecular characterization and diagnosis of QoI resistance in cucumber and eggplant fungal pathogens. Phytopathology 97:1458–1466

    Article  CAS  PubMed  Google Scholar 

  • Kang HX, Weng YQ, Yang YH, Zhang ZH, Zhang SP, Mao ZC, Cheng GH, Gu XF, Huang SW, Xie BY (2011) Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theor Appl Genet 122:795–803

    Article  CAS  PubMed  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kwon MK, Kang BR, Cho BH, Kim YC (2003) Occurrence of target leaf spot disease caused by Corynespora cassicolaon cucumber in Korea. Plant Pathol 52:424

    Article  Google Scholar 

  • Li RQ, Li YG, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713

    Article  CAS  PubMed  Google Scholar 

  • Li BJ, Zhao YJ, Gao W, Shi YX, Xie XW (2010) First report of target leaf spot caused by Corynespora cassiicola on balsam pear in China. Plant Dis 94:127

    Article  Google Scholar 

  • Li BJ, Gao W, Shi YX, Xie XW (2012) Progress in researches on Corynespora leaf spot. Acta Phytophylacica Sin 39:171–176

    CAS  Google Scholar 

  • Li YH, Wen CL, Weng YQ (2013) Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet 126:2187–2196

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyamoto T, Ishii H, Seko T, Kobori S, Tomita Y (2009) Occurrence of Corynespora cassiicola isolates resistant to boscalid on cucumber in Ibaraki Prefecture. Jpn Plant Pathol 58:1144–1151

    Article  CAS  Google Scholar 

  • Miyamoto T, Ishii H, Stammler G, Koch A, Ogawara T, Tomita Y, Fountaine JM, Ushio S, Sekoe T, Kobori S (2010) Distribution and molecular characterization of Corynespora cassiicola isolates resistant to boscalid. Plant Pathol 59:873–881

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oka K, Okubo A, Kodama M, Otani H (2006) Detoxification of α-tomatine by tomato pathogens Alternaria alternata tomato pathotype and Corynespora cassiicola and its role in infection. J Gen Plant Pathol 72:152–158

    Article  CAS  Google Scholar 

  • Oliveira RR, Vida JB, Tessmann DJ, Aguiar BM, Caixeta MP, Barboza AL (2007) Pathogenicity of Corynespora cassiicola isolates on different host plants. Summa Phytopathol 33:297–299

    Article  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    CAS  PubMed  Google Scholar 

  • Pang X, Zhou XH, Wan HJ, Chen JF (2013) QTL mapping of downy mildew resistance in an introgression line derived from interspecific hybridization between cucumber and Cucumis hystrix. J Phytopathol 161:536–543

    Article  Google Scholar 

  • Pariasca-Tanaka J, Lorieux M, He C, McCouch S, Thomson MJ, Wissuwa M (2015) Development of a SNP genotyping panel for detecting polymorphisms in Oryza glaberrima/O. sativa interspecific crosses. Euphytica 201:67–78

    Article  CAS  Google Scholar 

  • Peterson CE, Williams PH, Palmer M, Louward P (1982) Wisconsin 2757 cucumber. HortScience 17:268

    Google Scholar 

  • Qi YX, Xie YX, Zhang X, Pu JJ, Zhang HQ, Huang SL, Zhang H (2009) Molecular and pathogenic variation identified among isolates of Corynespora cassiicola. Mol Biotechnol 41:145–151

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Teramoto A, Martins MC, Ferreira LC, Cunha MG (2011) Reaction of hybrids, inhibition in vitro and target spot control in cucumber. Hortic Bras 29:342–348

    Article  Google Scholar 

  • Wan H, Zhao Z, Qian C, Sui Y, Malik A, Chen J (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399:257–261

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J (2013) Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics 14:109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HZ, Li SJ, Guan W (2010) The identification and genetic analysis of target spot in cucumber sources. China Veg 1:24–25

    Google Scholar 

  • Watudura PK, Eric H, Ravi LC, Uhanowita MS (2003) Genetic variation in Corynespora cassiicola: a possible relationship between host origin and virulence. Mycol Res 107:567–571

    Article  Google Scholar 

  • Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics 15:1158

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu X, Xu R, Zhu B, Yu T, Qu W, Lu L, Xu Q, Qi X, Chen X (2015) A high-density genetic map of cucumber derived from specific length amplified fragment sequencing (SLAF-seq). Front Plant Sci 5:768. doi:10.3389/fpls.2014.00768

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang SJ (2012) Genetic analysis and mapping of cca-2 gene resistant to cucumber target leaf spot. Chinese Academy of Agricultural Sciences Master Dissertation, pp 27–29

  • Yang LM, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ, Jiang JM, Weng YQ (2012a) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    Article  CAS  PubMed  Google Scholar 

  • Yang SJ, GU XF, Zhang SP, Miao H, Li BJ (2012b) Research progress on cucumber target leaf spot (Corynespora cassiicola). China Veg 4:1–9

    CAS  Google Scholar 

  • Yang L, Li D, Li Y, Gu X, Huang S, Garcia-Mas J, Weng Y (2013) A 1681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 13:53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Zhang W, He H, Nie J, Bie B, Zhao J, Ren G, Li Y, Zhang D, Pan J, Cai R (2014) Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). Plant J 78:1034–1046

    Article  CAS  PubMed  Google Scholar 

  • Yuan GQ, Xie YL, Tan DC, Li QQ, Lin W (2014) First report of leaf spot caused by Corynespora cassiicolaon in kiwifruit (Actinidia chinensis) in China. Plant Dis 98:1586–1587

    Article  Google Scholar 

  • Zhang SP, Liu MM, Miao H, Zhang SQ, Yang YH, Xie BY, Wehner TC, Gu XF (2013) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    Article  CAS  Google Scholar 

  • Zhang SP, Miao H, Yang YH, Xie BY, Wang Y, Gu XF (2014) A major quantitative trait locus conferring resistance to Fusarium wilt was detected in cucumber by using recombinant inbred lines. Mol Breed 34:1805–1815

    Article  CAS  Google Scholar 

  • Zhou Q, Miao H, Li S, Zhang SP, Wang Y, Weng Y, Zhang ZH, Huang S, Gu XF (2015) A sequencing-based linkage map of cucumber. Mol Plant. doi:10.1016/j.molp.2015.02.008

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (No. 31401873 to CW), the National Science & Technology Pillar Program (2014BAD01B09 and 2012BAD02B03), the National High Technology Research and Development Program of China (2012AA100103), the Beijing Municipal Science and Technology Commission(Z131100003113012), and Beijing Academy of Agricultural and Forestry Sciences (CXJJ201305/QNJJ201501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changlong Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the study compiles with the current laws of the countries in which the experiments were performed.

Additional information

Communicated by C. Gebhardt.

C. Wen, A. Mao, and C. Dong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, C., Mao, A., Dong, C. et al. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L.. Theor Appl Genet 128, 2495–2506 (2015). https://doi.org/10.1007/s00122-015-2604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2604-z

Keywords

Navigation