Skip to main content
Log in

Cartographic evaluation of the risk of natural elements’ deficiency in the soil cover provoking spatial variation of the endemic morbidity level (on example of thyroid morbidity among population of the Central Federal District, Russia)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The main goal of the study is to evaluate the contribution of the natural geochemical risk in the central part of the Eastern European Plain to the spatial distribution of human diseases provoked by the deficiency of biologically significant microelements (Co, Cu, and I) in the environment. The Central Federal District (CFD) of Russia, located in the Eastern European Plain is characterized by a deficiency of Co, Cu, and I in the environment (soils, local food). To access the risk of thyroid diseases associated with Co, Cu, and I content in soils of the CFD based on published data of trace elements concentrations and digital soil map we create maps of the elements variation in soil cover allowing to estimate their mean concentration in the regions. The obtained cartographic estimates are comparable with the previously published assessments and averaged study results at the regional level. Comparison with medical data on thyroid disease morbidity from 2013 to 2017 at the regional level showed a significant inverse correlation with the cartographic estimates of soil I and combined (Co + Cu + I) status with due consideration of soil structure (12 regions, except for those affected by technogenic radioiodine contamination and Moscow urbanized regions). The urban population suffered from thyroid diseases to a higher extent in comparison with the rural population, which corresponds to our previous estimates. The results confirmed the possibility of assessing the geochemical risk of endemic diseases based on geochemical soil maps and identifying the negative contribution of micronutrient deficiency in the environment to endemic morbidity in the population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbag, F. I., Abu-Eshy, S. A., Mahfouz, A. A., Al-Fifi, S. A., El-Wadie, H., Abdallah, S. M., et al. (2015). Iodine-deficiency disorders in the Aseer region, south-western Saudi Arabia: 20 years after the national survey and universal salt iodization. Public Health Nutrition, 18(14), 2523–2529. https://doi.org/10.1017/S1368980014003073

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Bazi, M. M., Kumosani, T. A., Al-Malki, A. L., Kannan, K., & Moselhy, S. S. (2021). Association of trace elements abnormalities with thyroid dysfunction. African Health Sciences, 21(3), 1451–1459. https://doi.org/10.4314/ahs.v21i3.56

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleksandrova, G. A., Polykarpov, A. V., Ogryzko, E. V., Golubev, N. A., Kadulina, N. A., Belyaeva, I. M., Gladkikh, T. E., Sherbakova, G. A., & Semenova, T. A. (2015). Morbidity for the entire Russian population in 2014. Statistical materials. Part 1. Russian Research Institute of Health (in Russian).

  • Aleksandrova, G. A., Polykarpov, A. V., Golubev, N. A., Oskov, Y. I., Kadulina, N. A., Belyaeva, I. M., Gladkikh, T. E., Sherbakova, G. A., & Semenova, T. A. (2016). Morbidity for the entire Russian population in 2015. Statistical materials. Part 1. Russian Research Institute of Health (in Russian).

  • Aleksandrova, G. A., Polykarpov, A.V., Golubev, N. A., Oskov, Y. I., Kadulina, N. A., Belyaeva, I. M., Gladkikh T. E., Sherbakova, G. A., & Semenova, T. A. (2017). Morbidity for the entire Russian population in 2016. Statistical materials. Part 1. Russian Research Institute of Health (in Russian).

  • Alyabina, I. O., Androhanov, V. A., Vershinin, V. V., Volkov, S. N., Ganzhara, N. F., Dobrovolsky, G. V., Ivanov, A. V., Ivanov, A. L., Ivanova, E. A., Ilyin, L. I., Karpachevsky, M. L., Kashtanov, A. N., Kiryushin, V. I., Kolesnikova, V. M., Kolesnikova, L. G., Lojko, P. F., Manylov, I. E., Marechek, M. S., Mahinova, A. F., Molchanov, E. N., Prohorov, A. N., Pyagaj, E. T., Rozhkov, V. A., Rybalsky, N. N., Savin, I. Y., Samoilova, N. S., Sapozhnikov, P. M., Sizov, V. V., Stolbovoy, V. S., Suhanov, P. A., Urusevskaya, I. S., Chochaev, A. H., Sheremet, B. V., Shoba, S. A., & Yakovlev, A. S. (2014). Unified State Register of Soil Resources of Russia. V.V. Dokuchaev Soil Science Institute. (in Russian).

  • Annual report. Pollution of soils of the Russian Federation by toxicants of industrial origin in 2022. (2023). NPO “Taifun” (in Russian).

  • Bech, J., Abreu, M., Korobova, E., Lima, A., & Pérez-Sirvent, C. (2014a). Radioactive chemical species in soils: Pollution and remediation. Journal of Geochemical Exploration, 142, 1–3. https://doi.org/10.1016/j.gexplo.2014.05.002

    Article  CAS  Google Scholar 

  • Bech, J., Korobova, E., Abreu, M., Bini, C., Chon, H.-T., & Pérez-Sirvent, C. (2014b). Soil pollution and reclamation. Journal of Geochemical Exploration, 147, 77–79. https://doi.org/10.1016/j.gexplo.2014.11.001

    Article  CAS  Google Scholar 

  • Environmental geochemical atlas of the central Barents region: special publication of the Central Kola Expedition, Geological Survey of Finland and Geological Survey of Norway. Ed.: Clemens Reimann; M. Äyräs, V. Chekushin (1998). Stuttgart: Schweizerbart.

  • Fei, X., Wu, J., Liu, Q., Ren, Y., & Lou, Z. (2016). Spatiotemporal analysis and risk assessment of thyroid cancer in Hangzhou, China. Stochastic Environmental Research and Risk Assessment, 30(8), 2155–2168. https://doi.org/10.1007/s00477-015-1123-4

    Article  Google Scholar 

  • Hatch, M., Polyanskaya, O., McConnell, R., Gong, Z., Drozdovitch, V., Rozhko, A., et al. (2011). Urinary iodine and Goiter Prevalence in Belarus: Experience of the Belarus-American cohort study of thyroid cancer and other thyroid diseases following the chornobyl nuclear accident. Thyroid, 21(4), 429–437. https://doi.org/10.1089/thy.2010.0143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov, D. N., & Lerner, L. A. (1974). Use of spectral methods in soil science and agrochemistry in the Soviet union. Geoderma, 12(1), 163–173. https://doi.org/10.1016/0016-7061(74)90049-4

    Article  CAS  Google Scholar 

  • Korobova, E. M. (1992). Copper, Cobalt, and Iodine in Natural Landscapes of Non- Chernozems Part of the East European Plain. MSU. (in Russian).

  • Korobova, E. M. (2017). Principles of spatial organization and evolution of the biosphere and the noosphere. Geochemistry International, 55, 1205–1282. https://doi.org/10.1134/S001670291713002X

    Article  CAS  Google Scholar 

  • Korobova, E. M. (2020). Toxicity as a Biogeochemical Problem. Geochemistry International, 58, 1092–1096. https://doi.org/10.1134/S0016702920100080

    Article  CAS  Google Scholar 

  • Korobova, E. M., Baranchukov, V. S., Kurnosova, I. V., & Silenok, A. V. (2022). Spatial geochemical differentiation of the iodine-induced health risk and distribution of thyroid cancer among urban and rural population of the Central Russian plain affected by the Chernobyl NPP accident. Environmental Geochemistry and Health, 44(6), 1875–1891. https://doi.org/10.1007/s10653-021-01133-4

    Article  CAS  PubMed  Google Scholar 

  • Korobova, E. M., Berezkin, V. U., Korsakova, N. V., Krigman, L. V., Romanov, S. L., & Baranchukov, V. S. (2019). Iodine in soils and potatoes produced in private farms of bryansk and gomel regions located in the impact zone of the chernobyl accident. Eurasian Soil Science, 52(10), 1266–1273. https://doi.org/10.1134/S1064229319100053.

    Article  CAS  Google Scholar 

  • Korobova, E., Romanov, S., & Silenok, A. (2020). Endemic diseases of geochemical origin and methodological approaches toward their prevention and elimination. Environmental Geochemistry and Health, 42, 2595–2608. https://doi.org/10.1007/s10653-019-00442-z

    Article  CAS  PubMed  Google Scholar 

  • Kovalsky, V. V., & Andrianova, G. A. (1970). Microelements in soils of the USSR. (in Russian).

  • Kovalsky, V. V. (1974). Geochemical Ecology. Nauka. (in Russian).

  • López-Abente, G., Aragonés, N., Pérez-Gómez, B., Pollán, M., García-Pérez, J., Ramis, R., & Fernández-Navarro, P. (2014). Time trends in municipal distribution patterns of cancer mortality in Spain. BMC Cancer, 14, 535. https://doi.org/10.1186/1471-2407-14-535

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro, M. C., Pérez-Sirvent, C., Martínez-Sánchez, M. J., Vidal, J., Tovar, P. J., & Bech, J. (2008). Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 96(2), 183–193. https://doi.org/10.1016/j.gexplo.2007.04.011

    Article  CAS  Google Scholar 

  • Pérez-Sirvent, C., Hernández-Pérez, C., Martínez-Sánchez, M. J., García-Lorenzo, M. L., & Bech, J. (2017). Metal uptake by wetland plants: Implications for phytoremediation and restoration. Journal of Soils and Sediments, 17(5), 1384–1393. https://doi.org/10.1007/s11368-016-1520-4

    Article  CAS  Google Scholar 

  • Pérez-Sirvent, C., Martínez-Martínez, L. B., Martínez-Lopez, S., Hernández-Perez, C., García-Lorenzo, M. L., Bech, J., & Martínez-Sánchez, M. J. (2022). Assessment of risk from lead intake in mining areas: Proposal of indicators. Environmental Geochemistry and Health, 44(2), 447–463. https://doi.org/10.1007/s10653-021-00995-y

    Article  CAS  PubMed  Google Scholar 

  • Plumlee, G. S., & Ziegler, T. L. (2007). The Medical Geochemistry of Dusts, Soils, and Other Earth Materials. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (pp. 1–61). Pergamon. https://doi.org/10.1016/B0-08-043751-6/09050-2

    Chapter  Google Scholar 

  • Polykarpov, A. V., Aleksandrova, G. A., Golubev, N. A., Turina, E. M., Oskov, Y. I., & Shelepova, E. A. (2018). Morbidity for the entire Russian population in 2017. Statistical materials. Part 1. Russian Research Institute of Health (in Russian).

  • Population of Russia, federal districts, subjects of the Russian Federation, districts, urban localities, rural localities - district centres and rural localities with a population of 3,000 or more (2010). Federal State Statistics Service. (in Russian).

  • Proskuyarova, G., & Nikitina, O. (1976). Accelerated version of the kinetic rodanite-nitrite method for the determination of trace amounts of iodine in biological objects. Agrochemistry, 7, 140–143. (in Russian).

    Google Scholar 

  • Protasova, N. A., & Sherbakov, A. P. (2003). Microelements (Cr, V, Ni, Mn, Zn, Cu, Co, Ti, Zr, Ga, Be, Sr, Ba, B, I, Mo) in Chernozems and Greyzems of the Central Chernozemic region. Voronezh State University press. (in Russian).

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., Vivo, B. D., Vos, W. D., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., O'Connor, P.J., Olsson, S.Å., Ottesen, R.-T., Petersell, V., Plant, J.A., Reeder, S., Salpeteur, I., Sandström, H., Siewers, U., Steenfelt, A., Tarvainen, T. (2005). Geochemical Atlas of Europe. Part 1: Background Information, Methodology and maps. Geological Survey of Finland.

  • Sanjari, M., Gholamhoseinian, A., & Nakhaee, A. (2014). The association between cobalt deficiency and endemic goiter in school-aged children. Endocrinology and Metabolism, 29(3), 307–311. https://doi.org/10.3803/EnM.2014.29.3.307

    Article  PubMed  PubMed Central  Google Scholar 

  • Vila, L., Donnay, S., Arena, J., Arrizabalaga, J. J., Pineda, J., Garcia-Fuentes, E., et al. (2016). Iodine status and thyroid function among Spanish schoolchildren aged 6–7 years: The Tirokid study. British Journal of Nutrition, 115(9), 1623–1631. https://doi.org/10.1017/S0007114516000660

    Article  CAS  PubMed  Google Scholar 

  • Zborischuk, Yu. N. (1978). Copper and zinc in the arable layer (0–20 cm) of soils of the European part of the USSR. Pochvovedeniye, 1, 31–37. in Russian.

    Google Scholar 

  • Zborischuk, Yu. N., & Zyrin, N. G. (1974). Average content of trace elements in soils of the European part of the USSR in the 0–20 cm layer. Agrokhimiya, 5, 20. in Russian.

    Google Scholar 

  • Zyrin N.G., Obukhov A.I., Belitsina G.D. (1971). Methodological guidelines for spectrographic determination of trace elements in soil and plant ash. MSU. (in Russian).

Download references

Funding

The study was founded by the state task of the laboratory of biogeochemistry of environment of the Vernadsky Institute of Geochemistry & Analytical Chemistry of the Russian Academy of Sciences (GEOKHI RAS).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Supervision was provided by EK. Data analysis, mapping, and statistical analysis was performed by VB. Material preparation was performed by EK, VB, and JBB. The first draft of the manuscript was written by VB, and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Vladimir Sergeevich Baranchukov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This is an observational study. All medical data used are depersonalized, anonymous and have been previously published in official open access sources.

Consent to participate

As statistical medical data are depersonalized, anonymous and has been previously published in official open-access sources not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Elena Mikhailovna Korobova is deceased

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobova, E.M., Baranchukov, V.S. & Bech, J. Cartographic evaluation of the risk of natural elements’ deficiency in the soil cover provoking spatial variation of the endemic morbidity level (on example of thyroid morbidity among population of the Central Federal District, Russia). Environ Geochem Health 46, 109 (2024). https://doi.org/10.1007/s10653-024-01912-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01912-9

Keywords

Navigation