Skip to main content

Advertisement

Log in

A practical evaluation on integrated role of biochar and nanomaterials in soil remediation processes

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil decontamination and restoration continue to be a key environmental concern around the globe. The degradation of soil resources due to the presence of potentially toxic elements (PTEs) has a substantial influence on agricultural production, food security, and human well-being, and as a result, urgent action is required. PTEs pollution is not a threat to the agroecosystems but also a serious concern to human health; thereby, it needs to be addressed timely and effectively. Hence, the development of improved and cost-effective procedures to remove PTEs from polluted soils is imperative. With this context in mind, current review is designed to distinctly envisage the PTEs removal potential by the single and binary applications of biochar (BC) and nanomaterials (NMs).2 Recently, BC, a product of high-temperature biomass pyrolysis with high specific surface area, porosity, and distinctive physical and chemical properties has become one of the most used and economic adsorbent materials. Also, biochar’s application has generated interest in a variety of fields and environments as a modern approach against the era of urbanization, industrialization, and climate change. Likewise, several NMs including metals and their oxides, carbon materials, zeolites, and bimetallic-based NMs have been documented as having the potential to remediate PTEs-polluted environments. However, both techniques have their own set of advantages and disadvantages, therefore combining them can be a more effective strategy to address the growing concern over the rapid accumulation and release of PTEs into the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Associated data are submitted as supplementary materials.

References

  • Abdel Latef, A. A. H., Srivastava, A. K., El-sadek, M. S. A., Kordrostami, M., & Tran, L.-S.P. (2018). Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degradation Development, 29, 1065–1073. https://doi.org/10.1002/ldr.2780

    Article  Google Scholar 

  • Ahmed, G. M., Sudhir, S., Zhi, G., Gurpal, S., Haiyan, Y., Rudra, D. T., Baoshan, X., Craig, M., Jason, C. W., & Om, P. D. (2021). Nanoscale sulfur improves plant growth and reduces arsenic toxicity and accumulation in rice (Oryza sativa L.). Environmental Science & Technology, 55(20), 13490–13503. https://doi.org/10.1021/acs.est.1c05495

    Article  CAS  Google Scholar 

  • Ali, D. Z., Alireza, M. T., & Azar, V. H. (2020a). Co-application of biochar and titanium dioxide nanoparticles to promote remediation of antimony from soil by Sorghum bicolor: metal uptake and plant response. Heliyon, 6(8), e04669. https://doi.org/10.1016/j.heliyon.2020a.e04669

    Article  Google Scholar 

  • Ali, D. Z., Alireza, M. T., & Azar, V. H. (2020b). Incorporation of biochar and nanomaterials to assist remediation of heavy metals in soil using plant species. Environmental Technology & Innovation. https://doi.org/10.1016/j.eti.2020b.101134

    Article  Google Scholar 

  • Ali, S., Rizwan, M., Noureen, S., et al. (2019). Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environmental Science and Pollution Research, 26, 11288–11299. https://doi.org/10.1007/s11356-019-04554-y

    Article  CAS  Google Scholar 

  • Arabyarmohammadi, H., Darban, A. K., Abdollahy, M., Yong, R., Ayati, B., Zirakjou, A., & van der Zee, S. E. (2018). Utilization of a novel chitosan/clay/biochar nanobiocomposite for immobilization of heavy metals in acid soil environment. Journal of Polymers and the Environment, 26(5), 2107–2119.

    Article  CAS  Google Scholar 

  • Awasthi, G., Nagar, V., Mandzhieva, S., Minkina, T., Sankhla, M. S., Pandit, P. P., & Srivastava, S. (2022). Sustainable amelioration of heavy metals in soil ecosystem: Existing developments to emerging trends. Minerals, 12(1), 85. https://doi.org/10.3390/min12010085

    Article  CAS  Google Scholar 

  • Azeez, L., Adebisi, S. A., Adetoro, R. O., Oyedeji, A. O., Agbaje, W. B., & Olabode, O. A. (2021). Foliar application of silver nanoparticles differentially intervenes remediation statuses and oxidative stress indicators in Abelmoschus esculentus planted on gold-mined soil. International Journal of Phytoremediation, 24(4), 384–393.

    Article  Google Scholar 

  • Baragaño, D., Forján, R., Fernández, B., et al. (2020). Application of biochar, compost and ZVI nanoparticles for the remediation of As, Cu, Pb and Zn polluted soil. Environmental Science and Pollution Research, 27, 33681–33691. https://doi.org/10.1007/s11356-020-09586-3

    Article  CAS  Google Scholar 

  • Barakhov, A., Minkina, T., Sushkova, S., Dudnikova, T., Barbashev, A., Lobzenko, I., Chernikova, N., & Kalinitchenko, V. (2020). Evaluation of the biochar effect on co-contaminated soils by the fitotesting method. IOP Conference Series: Earth and Environmental Science, 578(1), 012018.

    Google Scholar 

  • Bauer, T., Minkina, T., Mandzhieva, S., Burachevskaya, M., & Zharkova, M. (2020a). Biochar application to detoxification of the heavy metal-contaminated fluvisols. E3S Web of Conferences, 175, 09009.

    Article  CAS  Google Scholar 

  • Bauer, T., Minkina, T., Sushkova, S., Rajput, V., Tereshenko, A., Nazarenko, A., Mandzhieva, S., & Sushkov, A. (2020b). Mechanisms of copper immobilization in fluvisol after the carbon sorbent applying. Eurasian Journal of Soil Science, 9(4), 356–361.

    CAS  Google Scholar 

  • Burachevskaya, M., Minkina, T., Zamulina, I., Fedorenko, A., Kalinichenko, V., Lobzenko, I., & Sushkova, S. (2020). Effect of biochar on the lead mobility in Haplic Chernozem. IOP Conference Series: Earth and Environmental Science, 578(1), 012012.

    Google Scholar 

  • Chai, M., Shi, F., Li, R., et al. (2013). Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae). Plant Growth Regulation, 71, 171–179. https://doi.org/10.1007/s10725-013-9817-4

    Article  CAS  Google Scholar 

  • Chausali, N., Saxena, J., & Prasad, R. (2021). Nanobiochar and biochar based nanocomposites: Advances and applications. Journal of Agriculture and Food Research, 5, 100191. https://doi.org/10.1016/j.jafr.2021.100191

    Article  CAS  Google Scholar 

  • Chen, H., Yuan, X., Xiong, T., Jiang, L., Wang, H., & Wu, Z. (2020). Biochar facilitated hydroxyapatite/calcium silicate hydrate for remediation of heavy metals contaminated soils. Water Air Soil Pollution, 231, 1–16.

    Article  Google Scholar 

  • Chen, M., Zeng, G., Xu, P., Zhang, Y., Jiang, D., & Zhou, S. (2017). Understanding enzymatic degradation of single-walled carbon nanotubes triggered by functionalization usingmolecular dynamics simulation. Environmental Science: Nanomaterials, 4, 720–727. https://doi.org/10.1039/C7EN00050B

    Article  CAS  Google Scholar 

  • Chen, Q., Cao, X., Liu, B., Nie, X., Liang, T., Suhr, J., & Ci, L. (2021). Effects of functional carbon nanodots on water hyacinth response to Cd/Pb stress: Implication for phytoremediation. Journal of Environmental Management, 299, 113624. https://doi.org/10.1016/j.jenvman.2021.113624

    Article  CAS  Google Scholar 

  • Cheng, P., Zhang, S., Wang, Q., Feng, X., Zhang, S., Sun, Y., & Wang, F. (2021). Contribution of nano-zero-valent Iron and Arbuscular Mycorrhizal fungi to phytoremediation of heavy metal-contaminated soil. Nanomaterials, 11(5), 1264. https://doi.org/10.3390/nano11051264

    Article  CAS  Google Scholar 

  • Ding, L., Li, J., Liu, W., Zuo, Q., & Liang, S. X. (2017). Influence of nano-hydroxyapatite on the metal bioavailability, plant metal accumulation and root exudates of ryegrass for phytoremediation in lead-polluted soil. International Journal of Environmental Research and Public Health, 14(5), 532. https://doi.org/10.3390/ijerph14050532

    Article  CAS  Google Scholar 

  • Feng, N., Ghoveisi, H., Bitton, G., & Bonzongo, J. J. (2016). Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: Assessment of residual toxicity using plant and MetPLATE studies. Environmental Pollution, 219, 9–18.

    Article  CAS  Google Scholar 

  • Gao, M., Chang, X., Yang, Y., & Song, Z. (2020). Foliar graphene oxide treatment increases photosynthetic capacity and reduces oxidative stress in cadmium-stressed lettuce. Plant Physiology and Biochemistry, 154, 287–294. https://doi.org/10.1016/j.plaphy.2020.06.021

    Article  CAS  Google Scholar 

  • Gao, Y. Y., & Zhou, Q. X. (2013). Application of nanoscale zero valent iron combined with impatiens Balsamina to remediation of E-waste contaminated soils. AMR, 790, 73–76. https://doi.org/10.4028/www.scientific.net/amr.790.73

    Article  CAS  Google Scholar 

  • Gerhardt, K. E., Gerwing, P. D., & Greenberg, B. M. (2017). Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256, 170–185. https://doi.org/10.1016/j.plantsci.2016.11.016

  • Gholizadeh, M., & Hu, X. (2021). Removal of heavy metals from soil with biochar composite: A critical review of the mechanism. Journal of Environmental Chemical Engineering, 9(5), 105830. https://doi.org/10.1016/j.jece.2021.105830

  • Ghosh, D., & Maiti, S. K. (2021). Biochar assisted phytoremediation and biomass disposal in heavy metal contaminated mine soils: A review. International Journal of Phytoremediation, 23(6), 559–576. https://doi.org/10.1080/15226514.2020.1840510

    Article  CAS  Google Scholar 

  • Gil-Díaz, M., Diez-Pascual, S., González, A., Alonso, J., Rodríguez-Valdés, E., Gallego, J. R., & Lobo, M. C. (2016). A nanoremediation strategy for the recovery of an as-polluted soil. Chemosphere, 149, 137–145. https://doi.org/10.1016/j.chemosphere.2016.01.106

    Article  CAS  Google Scholar 

  • Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8(3), 281.

    Article  Google Scholar 

  • Gong, X., Huang, D., Liu, Y., Zou, D., Xi, Hu., Zhou, Lu., Zhibin, Wu., Yang, Y., & Xiao, Z. (2021). Nanoscale zerovalent iron, carbon nanotubes and biochar facilitated the phytoremediation of cadmium contaminated sediments by changing cadmium fractions, sediments properties and bacterial community structure. Ecotoxicology and Environmental Safety, 208, 111510. https://doi.org/10.1016/j.ecoenv.2020.111510

    Article  CAS  Google Scholar 

  • Haider, F. U., Wang, X., Farooq, M., Hussain, S., Cheema, S. A., ul Ain, N., & Liqun, C. (2022). Biochar application for the remediation of trace metals in contaminated soils: Implications for stress tolerance and crop production. Ecotoxicology and Environmental Safety, 230, 113165.

    Article  CAS  Google Scholar 

  • Hamid, Y., Tang, L., Hussain, B., Usman, M., Gurajala, H. K., Rashid, M. S., He, Z., & Yang, X. (2020). Efficiency of lime, biochar, Fe containing biochar and composite amendments 1 for Cd and Pb immobilization in a co-contaminated alluvial soil. Environmental Solutions, 257, 1–35.

    Google Scholar 

  • Han, L., Xue, S., Zhao, S., Yan, J., Qian, L., & Chen, M. (2015). Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PLoS ONE, 10(7), e0132067.

    Article  Google Scholar 

  • He, R., Peng, Z., Lyu, H., Huang, H., Nan, Q., & Tang, J. (2018). Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment, 612, 1177–1186.

    Article  CAS  Google Scholar 

  • Huang, D., Qin, X., Peng, Z., Liu, Y., Gong, X., Zeng, G., & Hu, Z. (2018). Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicology and Environmental Safety, 153, 229–237. https://doi.org/10.1016/j.ecoenv.2018.01.060

    Article  CAS  Google Scholar 

  • Hussain, B., Lin, Q., Hamid, Y., Sanaullah, M., Di, L., Khan, M. B., & Yang, X. (2020). Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Science of the Total Environment, 712, 136497. https://doi.org/10.1016/j.scitotenv.2020.136497

    Article  CAS  Google Scholar 

  • Hussain, F., Hadi, F., & Rongliang, Q. (2021). Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation. Environmental Science and Pollution Research, 28, 34697–34713. https://doi.org/10.1007/s11356-021-13132-0

    Article  CAS  Google Scholar 

  • Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y. S., & Cao, X. (2015). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433. https://doi.org/10.1080/10643389.2015.1096880

    Article  CAS  Google Scholar 

  • Ituen, E., Yuanhua, L., Verma, C., Alfantazi, A., Akaranta, O., & Ebenso, E. E. (2021). Synthesis and characterization of walnut husk extract-silver nanocomposites for removal of heavy metals from petroleum wastewater and its consequences on pipework steel corrosion. Journal of Molecular Liquids, 335, 116132.

    Article  CAS  Google Scholar 

  • Jiang, H., Li, Y., Jin, Q., Yang, D., Wu, C., & Cui, J. (2021). Physiological and biochemical effects of Ti3AlC2 nanosheets on rice (Oryza sativa L.). Science of the Total Environment, 770, 145340. https://doi.org/10.1016/j.scitotenv.2021.145340

    Article  CAS  Google Scholar 

  • Jiang, J., Pi, J., & Cai, J. (2018). The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorganic Chemistry and Applications. https://doi.org/10.1155/2018/1062562

    Article  Google Scholar 

  • Jin, Y., Liu, W., Li, X., Shen, S., Liang, S., Liu, C., & Shan, L. (2016). Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecological Engineering, 95, 25–29. https://doi.org/10.1016/j.ecoleng.2016.06.071

    Article  Google Scholar 

  • Jin, Y., Qian, H., Sun, L., Pan, X., Fan, X., Li, X., & Zhang, Z. (2017). Aluminum oxide nanoparticles and aluminum ion leading to distinct physiological and molecular responses in Arabidopsis thaliana. Environmental Pollution, 228, 517–527. https://doi.org/10.1016/j.envpol.2017.04.073

    Article  CAS  Google Scholar 

  • Khan, A. G. (2020). Promises and potential of in situ nano-phytoremediation strategy to mycorrhizo-remediate heavy metal contaminated soils using non-food bioenergy crops (Vetiver zizinoides & Cannabis sativa). International Journal of Phytoremediation, 22(9), 900–915. https://doi.org/10.1080/15226514.2020.1774504

    Article  CAS  Google Scholar 

  • Khan, M. A., Ding, X. D., Khan, S., Brusseau, M. L., Khan, A., & Nawab, J. (2019). The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Science of the Total Environment, 636, 810–817.

    Article  Google Scholar 

  • Kong, S., Tang, J., Ouyang, F., & Chen, M. (2021). Research on the treatment of heavy metal pollution in urban soil based on biochar technology. Environmental Technology & Innovation, 23, 101670.

    Article  CAS  Google Scholar 

  • Kumari, A., Kumari, P., Rajput, V. D., Sushkova, S. N., & Minkina, T. (2022). Metal(loid) nanosorbents in restoration of polluted soils: Geochemical, ecotoxicological, and remediation perspectives. Environmental Geochemistry and Health, 44(1), 235–246. https://doi.org/10.1007/S10653-021-00996-X/FIGURES/3

    Article  CAS  Google Scholar 

  • Lacalle, R. G., Gómez-Sagasti, M. T., Artetxe, U., Garbisu, C., & Becerril, J. M. (2018). Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Science of the Total Environment, 618, 347–356. https://doi.org/10.1016/j.scitotenv.2017.10.334

    Article  CAS  Google Scholar 

  • Lebrun, M., De Zio, E., Miard, F., Scippa, G. S., Renzone, G., Scaloni, A., Bourgerie, S., Morabito, D., & Trupiano, D. (2020). Amending an As/Pb contaminated soil with biochar, compost and iron grit: Effect on Salix viminalis growth, root proteome profiles and metal(loid) accumulation indexes. Chemosphere, 244, 125397. https://doi.org/10.1016/j.chemosphere.2019.125397

    Article  CAS  Google Scholar 

  • Lebrun, M., Miard, F., Nandillon, R., Scippa, G. S., Bourgerie, S., & Morabito, D. (2019). Biochar effect associated with compost and iron to promote Pb and as soil stabilization and Salix viminalis L. growth. Chemosphere, 222, 810–822.

    Article  CAS  Google Scholar 

  • Li, J., Xia, C., Cheng, R., Lan, J., Chen, F., Li, X., & Hou, H. (2022). Passivation of multiple heavy metals in lead–zinc tailings facilitated by straw biochar-loaded N-doped carbon aerogel nanoparticles: Mechanisms and microbial community evolution. Science of the Total Environment, 803, 149866. https://doi.org/10.1016/j.scitotenv.2021.149866

    Article  CAS  Google Scholar 

  • Li, Y., Zhu, N., Liang, X., Bai, X., Zheng, L., Zhao, J., Li, Y.-F., Zhang, Z., & Gao, Y. (2020). Silica nanoparticles alleviate mercury toxicity via immobilization and inactivation of Hg(ii) in soybean (Glycine max). Environmental Science: Nano, 7, 1807–1817. https://doi.org/10.1039/D0EN00091D

    Article  CAS  Google Scholar 

  • Lian, J., Zhao, L., Wu, J., Xiong, H., Bao, Y., Zeb, A., Tang, J., & Liu, W. (2020). Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere, 239, 124794. https://doi.org/10.1016/j.chemosphere.2019.124794

    Article  CAS  Google Scholar 

  • Liang, S., Jin, Y., Liu, W., Li, X., Shen, S., & Ding, L. (2017). Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment. Journal of Environmental Management, 190, 170–175. https://doi.org/10.1016/j.jenvman.2016.12.064

    Article  CAS  Google Scholar 

  • Lin, P., Liu, H., Yin, H., Zhu, M., Luo, H., & Dang, Z. (2023). Remediation performance and mechanisms of Cu and Cd contaminated water and soil using Mn/Al-layered double oxide-loaded biochar. Journal of Environmental Sciences, 125, 593–602.

    Article  CAS  Google Scholar 

  • Liu, W., Li, Y., Feng, Y., et al. (2020). The effectiveness of nanobiochar for reducing phytotoxicity and improving soil remediation in cadmium-contaminated soil. Science and Reports, 10, 858.

    Article  Google Scholar 

  • Mahmood, A., Hussain, S., Mahmood, F., Iqbal, M., Shahid, M., Ibrahim, M., & Shahzad, T. (2021). Toxicity of biogenic zinc oxide nanoparticles to soil organic matter cycling and their interaction with rice-straw derived biochar. Scientific Reports, 11(1), 1–12.

    Google Scholar 

  • Majumdar, A., Upadhyay, M. K., Ojha, M., Afsal, F., Giri, B., Srivastava, S., & Bose, S. (2022). Enhanced phytoremediation of Metal (loid) s via spiked ZVI nanoparticles: An urban clean-up strategy with ornamental plants. Chemosphere, 288, 132588. https://doi.org/10.1016/j.chemosphere.2021.132588

    Article  CAS  Google Scholar 

  • Mandal, S., Pu, S., Shangguan, L., Liu, S., Ma, H., Adhikari, S., & Hou, D. (2020). Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation. Environment International, 135, 105374.

    Article  CAS  Google Scholar 

  • Matin, N. H., Jalali, M., & Buss, W. (2020). Synergistic immobilization of potentially toxic elements (PTEs) by biochar and nanoparticles in alkaline soil. Chemosphere, 241, 124932.

    Article  Google Scholar 

  • Moghadam, A. V., Iranbakhsh, A., Saadatmand, S., Ebadi, M., & Ardebili, Z. O. (2021). New insights into the transcriptional, epigenetic, and physiological responses to zinc oxide nanoparticles in datura stramonium; potential species for phytoremediation. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-021-10305-6

    Article  Google Scholar 

  • Mokarram-Kashtiban, S., Hosseini, S. M., Tabari Kouchaksaraei, M., et al. (2019). The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. Environmental Science and Pollution Research, 26, 10776–10789. https://doi.org/10.1007/s11356-019-04411-y

    Article  CAS  Google Scholar 

  • Mousavi, S. J., Parvini, M., & Ghorbani, M. (2018). Adsorption of heavy metals (Cu2+ and Zn2+) on novel bifunctional ordered mesoporous silica: Optimization by response surface methodology. Journal of the Taiwan Institute of Chemical Engineers, 84, 123–141.

    Article  CAS  Google Scholar 

  • Mueller, N. C., & Nowack, B. (2008). Exposure modeling of engineered nanoparticles in the environment. Environmental Science & Technology, 42(12), 4447–4453. https://doi.org/10.1021/es7029637

    Article  CAS  Google Scholar 

  • Muhammad, H., Javeed, R., Ali, M., Ahmed, I., Wang, X., Al-Ashkar, I., Qamar, R., Ibrahim, A., Habib-Ur-Rahman, M., Ditta, A., & el Sabagh, A. (2021). Biochar enriched with buffalo slurry improved soil nitrogen and carbon dynamics, nutrient uptake and growth attributes of wheat by reducing leaching losses of nutrients. Land, 10(12), 1392. https://doi.org/10.3390/LAND10121392

    Article  Google Scholar 

  • Noman, M., Ahmed, T., Hussain, S., Niazi, M. B. K., Shahid, M., & Song, F. (2020a). Biogenic copper nanoparticles synthesized by using a copper-resistant strain Shigella Flexneri Snt22 reduced the translocation of cadmium from soil to wheat plants. Journal of Hazardous Materials, 398, 123175. https://doi.org/10.1016/j.jhazmat.2020.123175

    Article  CAS  Google Scholar 

  • Noman, M., Shahid, M., Ahmed, T., Tahir, M., Naqqash, T., Muhammad, S., Song, F., Abid, H. M. A., & Aslam, Z. (2020b). Green copper nanoparticles drom a native Klebsiella Pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicology and Environmental Safety, 192, 110303. https://doi.org/10.1016/j.ecoenv.2020.110303

    Article  CAS  Google Scholar 

  • Noreen, S., & Abd-Elsalam, K. A. (2021). Biochar-based nanocomposites: a sustainable tool in wastewater bioremediation. In K. A. Abd-Elsalam & M. Zahid (Eds.), Applications of nanomaterials for water purification, micro and nano technologies, aquananotechnology (pp. 185–200). Elsevier.

    Google Scholar 

  • Puga, A. P., Abreu, C. A., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J. Environ. Manag., 159, 86–93.

    Article  CAS  Google Scholar 

  • Qiao, J. T., Liu, T. X., Wang, X. Q., Li, F. B., Lv, Y. H., Cui, J. H., & Liu, C. P. (2018). Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere, 195, 260–271.

    Article  CAS  Google Scholar 

  • Qiu, Y., Zheng, Z., Zhou, Z., & Sheng, G. D. (2009). Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource Technology, 100(21), 5348–5351. https://doi.org/10.1016/j.biortech.2009.05.054

    Article  CAS  Google Scholar 

  • Rajaram, B. S., Suryawanshi, P. V., Bhanarkar, A. D., & Rao, C. V. C. (2014). Heavy metals contamination in road dust in Delhi city India. Environmental Earth Sciences, 72(10), 3929–3938.

    Article  CAS  Google Scholar 

  • Rajput, V. D., Minkina, T., Kumari, A., Shende, S. S., Ranjan, A., Faizan, M., Barakvov, A., Gromovik, A., Gorbunova, N., Rajput, P., Singh, A., Khabirov, I., Nazarenko, O., Sushkova, S., Kızılkaya, R. (2022). A review on nanobioremediation approaches for restoration of contaminated soil. Eurasian Journal of Soil Science, 11(1), 43–60. https://doi.org/10.18393/EJSS.990605

  • Rizwan, M., Ali, S., ur Rehman, M. Z., Adrees, M., Arshad, M., Qayyum, M. F., & Imran, M. (2019). Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution, 248, 358–367. https://doi.org/10.1016/j.envpol.2019.02.031

    Article  CAS  Google Scholar 

  • Seleiman, M. F., Alotaibi, M. A., Alhammad, B. A., Alharbi, B. M., Refay, Y., & Badawy, S. A. (2020). Effects of ZnO nanoparticles and biochar of rice straw and cow manure on characteristics of contaminated soil and sunflower productivity, oil quality, and heavy metals uptake. Agronomy, 10(6), 790. https://doi.org/10.3390/agronomy10060790

    Article  CAS  Google Scholar 

  • Shirkhani, Z., Chehregani Rad, A., & Mohsenzadeh, F. (2021). Improving Cd-phytoremediation ability of Datura stramonium L. by Chitosan and Chitosan nanoparticles. Biologia, 76, 2161–2171. https://doi.org/10.1007/s11756-021-00758-1

    Article  CAS  Google Scholar 

  • Silvani, L., Cornelissen, G., Botnen Smebye, A., Zhang, Y., Okkenhaug, G., Zimmerman, A. R., Thune, G., Sævarsson, H., & Hale, S. E. (2019). Can biochar and designer biochar be used to remediate per- and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils? Science of the Total Environment, 1(694), 133693. https://doi.org/10.1016/j.scitotenv.2019.133693

    Article  CAS  Google Scholar 

  • Simiele, M., Lebrun, M., Miard, F., Trupiano, D., Poupart, P., Forestier, O., Scippa, G. S., Bourgerie, S., & Morabito, D. (2020). Assisted phytoremediation of a former mine soil using biochar and iron sulphate: effects on as soil immobilization and accumulation in three Salicaceae species. Science of the Total Environment, 710, 136203.

    Article  CAS  Google Scholar 

  • Singh, O. V., & Jain, R. K. (2003). Phytoremediation of toxic aromatic pollutants from soil. Applied Microbiology and Biotechnology, 63(2), 128–135. https://doi.org/10.1007/s00253-003-1425-1

    Article  CAS  Google Scholar 

  • Singh, J., & Lee, B. K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management, 170, 88–96. https://doi.org/10.1016/j.jenvman.2016.01.015

    Article  CAS  Google Scholar 

  • Singh, J., & Lee, B. K. (2018). Effects of Nano-TiO2 particles on bioaccumulation of 133Cs from the contaminated soil by Soybean (Glycine max). Process Safety and Environmental Protection, 116, 301–311. https://doi.org/10.1016/j.psep.2018.02.016

    Article  CAS  Google Scholar 

  • Song, B., Xu, P., Chen, M., Tang, W., Zeng, G., Gong, J., Zhang, P., & Ye, S. (2019). Using nanomaterials to facilitate the phytoremediation of contaminated soil. Critical Reviews in Environmental Science and Technology, 49, 1–34. https://doi.org/10.1080/10643389.2018.1558891

    Article  Google Scholar 

  • Souri, Z., Karimi, N., Sarmadi, M., & Rostami, E. (2017). Salicylic acid nanoparticles (SANPs) improve growth and phytoremediation efficiency of Isatis cappadocica Desv., under As stress. IET Nanobiotechnology, 11, 650–655. https://doi.org/10.1049/iet-nbt.2016.0202

    Article  Google Scholar 

  • Su, H., Fang, Z., Tsang, P. E., Fang, J., & Zhao, D. (2016a). Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environmental Pollution, 214, 94–100.

    Article  CAS  Google Scholar 

  • Su, H., Fang, Z., Tsang, P. E., Zheng, L., Cheng, W., Fang, J., & Zhao, D. (2016b). Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. Journal of Hazardous Materials, 318, 533–540. https://doi.org/10.1016/j.jhazmat.2016.07.039

    Article  CAS  Google Scholar 

  • Sun, Y., Zheng, F., Wang, W., Zhang, S., & Wang, F. (2020). Remediation of Cr(VI)-contaminated soil by nano-zero-valent iron in combination with biochar or humic acid and the consequences for plant performance. Toxics, 8, 26. https://doi.org/10.3390/toxics8020026

    Article  CAS  Google Scholar 

  • Terzi, K., Sikinioti-Lock, A., Gkelios, A., Tzavara, D., Skouras, A., Aggelopoulos, C., & Tsakiroglou, C. D. (2016). Mobility of zero valent iron nanoparticles and liposomes in porous media. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 506, 711–722. https://doi.org/10.1016/j.colsurfa.2016.07.054

    Article  CAS  Google Scholar 

  • Thusalini, M., Sashikesh, G., & Kannan, N. (2022). Mechanisms of emerging contaminants removal by novel neem chip biochar. Environmental Advances, 7, 100158.

    Article  Google Scholar 

  • Usman, A. R. A., Sallam, A. S., Al-Omran, A., et al. (2013). Chemically modified biochar produced from conocarpus wastes: An efficient sorbent for Fe(II) removal from acidic aqueous solutions. Adsorption Science & Technology., 31(7), 625–640. https://doi.org/10.1260/0263-6174.31.7.625

    Article  CAS  Google Scholar 

  • Wan, X., Li, C., & Parikh, S. J. (2020). Simultaneous removal of arsenic, cadmium and lead from soil by iron-modified magnetic biochar. Environmental Pollution, 261, 114157.

    Article  CAS  Google Scholar 

  • Wan, S., Wu, J., Zhou, S., Wang, R., Gao, B., & He, F. (2018). Enhanced lead and cadmium removal using biochar-supported hydrated manganese oxide (HMO) nanoparticles: Behavior and mechanism. Science of the Total Environment, 616, 1298–1306. https://doi.org/10.1016/j.scitotenv.2017.10.188

    Article  Google Scholar 

  • Wu, J., Li, Z., Huang, D., Liu, X., Tang, C., Parikh, S. J., & Xu, J. (2020). A novel calcium-based magnetic biochar is effective in stabilization of arsenic and cadmium co-contamination in aerobic soils. Journal of Hazardous Materials, 387, 122010.

    Article  CAS  Google Scholar 

  • Xiaomin, G., Danlian, H., Yunguo, L., Guangming, Z., Rongzhong, W., Piao, X., Chen, Z., Min, C., Wenjing, X., & Sha, C. (2019). Roles of multiwall carbon nanotubes in phytoremediation: cadmium uptake and oxidative burst in Boehmeria nivea (L.). Environmental Science: Nano, 6, 851–862.

    Google Scholar 

  • Xing, J., Hu, T., Cang, L., & Zhou, D. (2016). Remediation of copper contaminated soil by using different particle sizes of apatite: A field experiment. Springerplus, 5, 1182.

    Article  Google Scholar 

  • Xu, D. M., Fu, R. B., Wang, J. X., Shi, Y. X., & Guo, X. P. (2021). Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods-a critical review. Journal of Cleaner Production, 321, 128730.

    Article  CAS  Google Scholar 

  • Yu, Z., Qiu, W., Wang, F., Lei, M., Wang, D., & Song, Z. (2017). Effects of manganese oxide-modified biochar composites on arsenic speciation and accumulation in an indica rice (Oryza sativa L.) cultivar. Chemosphere, 168, 341–349.

    Article  CAS  Google Scholar 

  • Yu, Z., Zhou, L., Huang, Y., Song, Z., & Qiu, W. (2015). Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil. Journal of Environmental Management, 163, 155–162.

    Article  CAS  Google Scholar 

  • Yuan, H., Liu, Q., Guo, Z., Fu, J., Sun, Y., Gu, C., & Dhankher, O. P. (2021). Sulfur nanoparticles improved plant growth and reduced mercury toxicity via mitigating the oxidative stress in Brassica napus L. Journal of Cleaner Production, 318, 128589.

    Article  CAS  Google Scholar 

  • Yue, L., Lian, F., Han, Y., Bao, Q., Wang, Z., & Xing, B. (2019). The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Science of the Total Environment, 656, 9–18. https://doi.org/10.1016/j.scitotenv.2018.11.364

    Article  CAS  Google Scholar 

  • Zand, A. D., Tabrizi, A. M., & Heir, A. V. (2020). Application of titanium dioxide nanoparticles to promote phytoremediation of Cd-polluted soil: Contribution of PGPR inoculation. Bioremediation Journal, 24(2–3), 171–189. https://doi.org/10.1080/10889868.2020.1799929

    Article  CAS  Google Scholar 

  • Zhang, L., Guo, J., Huang, X., Wang, W., Sun, P., Li, Y., & Han, J. (2019a). Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(II) and Cd(II). RSC Advances, 9, 365–376.

    Article  Google Scholar 

  • Zhang, M., Wang, J., Bai, S. H., Zhang, Y., Teng, Y., & Xu, Z. (2019b). Assisted phytoremediation of a co-contaminated soil with biochar amendment: Contaminant removals and bacterial community properties. Geoderma, 348, 115–123. https://doi.org/10.1016/j.geoderma.2019.04.031

    Article  CAS  Google Scholar 

  • Zhang, R., Zhang, N., & Fang, Z. (2018). In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar. Water Science and Technology, 77, 1622–1631.

    Article  CAS  Google Scholar 

  • Zhou, P., Adeel, M., Shakoor, N., Guo, M., Hao, Y., Azeem, I., & Rui, Y. (2021). Application of nanoparticles alleviates heavy metals stress and promotes plant growth: An overview. Nanomaterials, 11(1), 26. https://doi.org/10.3390/nano11010026

    Article  CAS  Google Scholar 

  • Zhu, N., Yan, T., Qiao, J., & Cao, H. (2016). Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: Adsorption mechanism and depleted adsorbent utilization. Chemosphere, 164, 32–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task in the field of scientific activity (no. 0852-2020-0029) and the Russian Foundation for Basic Research, project no. 19-29-05265.

Funding

The research was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state task in the field of scientific activity (no. 0852-2020-0029) and by the Strategic Academic Leadership Program of the Southern Federal University (“Priority 2030”).

Author information

Authors and Affiliations

Authors

Contributions

VDR, AK, SSM, and TM were involved in the conceptualization and methodology; AB, SS, SS, and AR performed the experiments; AK and VDR contributed to writing—original draft; VDR, AK, SS, SSM, PR, SS, MCG, and TM were involved in writing—review and editing; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Vishnu D. Rajput.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors have given consent to their contribution.

Consent for publication

All authors have agreed with the content, and all have given explicit consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, V.D., Kumari, A., Minkina, T. et al. A practical evaluation on integrated role of biochar and nanomaterials in soil remediation processes. Environ Geochem Health 45, 9435–9449 (2023). https://doi.org/10.1007/s10653-022-01375-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01375-w

Keywords

Navigation