Skip to main content
Log in

Phytoremediation of copper-contaminated soil by Artemisia absinthium: comparative effect of chelating agents

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Phytoremediation is a promising method for the removal of toxic trace elements, specifically of copper, from the contaminated soil in the mining regions of Armenia. Thereby, the objectives of our study were the assessment of copper accumulation capacity and phytoremediation suitability of wormwood (Artemisia absinthium L.), a potential metal hyperaccumulator, as well as the identification of the influence of some chelating agents and their combinations on copper phytoremediation effectiveness. The results of studies have shown that A. absinthium is a relatively well-adapted plant species with the ability to grow in copper-contaminated soils collected from the surroundings of Zangezur Copper and Molybdenum Combine (south-east of Armenia). The observed decrease in plant growth in contaminated soil was possible to restore by the use of ammonium nitrate. It was revealed that for the remediation of copper-contaminated soils by phytostabilisation method, A. absinthium could be grown without the application of chelating agents, as being a perennial herb, it is able to accumulate relatively high contents of copper in its root and do not transfer this metal to the above-ground part at the same time. As opposed to the phytostabilisation method, for the cleaning of copper-contaminated soils through phytoextraction method by A. absinthium, the application of chemical amendments is needed for the enhancement of copper bioavailability and for its intensive transportation to the above-ground part of the plant. Collating the effects of various chemical agents on the plant, we concluded that the growth scheme, when the application of NH4NO3, a promoter of plant growth, is combined with the joint use of citric and malic acids, can be applied as the most expedient approach for remediation of copper-contaminated soils by phytoextraction method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors are stating that all data included in the manuscript will be available and transparent for interested users.

References

  • Afshan, S., Ali, S., Bharwana, S. A., Rizwan, M., Farid, M., Abbas, F., Ibrahim, M., Mehmood, M. A., & Abbasi, G. H. (2015). Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environmental Science and Pollution Research, 22, 11679–11689. https://doi.org/10.1007/s11356-015-4396-8

    Article  CAS  Google Scholar 

  • Alvarenga, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., Duarte, E., & Cunha-Queda, A. C. (2008). Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Science and Total Environment, 406, 43–56. https://doi.org/10.1016/j.scitotenv.2008.07.061

    Article  CAS  Google Scholar 

  • Arinushkina, E. V. (1970). Manual on chemical analysis of soils. Publishing House of Moscow State University, Moscow, 487 p. (In Russian)

  • Ashraf, S., Ali, Q., Zahir, Z. A., Ashraf, S., & Asghar, H. N. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safe, 174, 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068

    Article  CAS  Google Scholar 

  • Baker, D. E., & Amacher, M. C. (1982). Nickel, copper, zinc, and cadmium. In: A. L. Page, R. H. Miller, D. R. Keeney (Eds.), Methods of soil analysis. Part 2: Chemical and microbiological properties, agronomy monograph 9 (pp. 323–336). Wisconsin, Madison: Agronomy Society of America and Soil Science Society of America.

  • Baker, A. J. M., McGrath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In N. Terry, J. Vangronsveld, & G. Bañuelos (Eds.), Phytoremediation of contaminated soils (pp. 85–107). CRC Press.

    Google Scholar 

  • Cambrollé, J., García, J. L., Ocete, R., Figueroa, M. E., & Cantos, M. (2013). Growth and photosynthetic responses to copper in wild grapevine. Chemosphere, 93, 294–301. https://doi.org/10.1016/j.chemosphere.2013.04.080

    Article  CAS  Google Scholar 

  • Choi, H.-W., Choi, S.-I., & Yang, J.-K. (2010). Heavy metal uptake by native plants in mine hazard area. Journal of the Soil and Groundwater Environment, 15, 27–33.

    Google Scholar 

  • Da Costa, M. V. J., & Sharma, P. K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 54, 110–119.

    Article  Google Scholar 

  • Deng, F., Wang, S., & Xin, H. (2016). Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bulletin of Environmental Contamination and Toxicology, 97, 702–708. https://doi.org/10.1007/s00128-016-1934-0

    Article  CAS  Google Scholar 

  • Di Palma, L., & Mecozzi, R. (2007). Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. Journal of Hazard Material, 147, 768–775. https://doi.org/10.1016/j.jhazmat.2007.01.072

    Article  CAS  Google Scholar 

  • EEA European Environment Agency. (2005). The European environment: State and outlook 2005. Denmark.

    Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2006). Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere, 63, 996–1004. https://doi.org/10.1016/j.chemosphere.2005.08.042

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Bauer, U., Ebel, M., & Schaeffer, A. (2007a). The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere, 68, 345–353. https://doi.org/10.1016/j.chemosphere.2006.12.058

    Article  CAS  Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2007b). Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68, 989–1003. https://doi.org/10.1016/j.chemosphere.2007.01.062

    Article  CAS  Google Scholar 

  • Farid, M., Ali, S., Shakoor, M. B., Bharwana, S. A., Rizvi, H., Ehsan, S., Tauqeer, H. M., Iftikhar, U., & Hannan, F. (2013). EDTA assisted phytoremediation of cadmium, lead and zinc. International Journal of Agronomy and Plant Production, 4, 2833–2846.

    Google Scholar 

  • Faucon, M., Chipeng, F., Verbruggen, N., Mahy, G., Colinet, G., Shutcha, M., Pourret, O., & Meerts, P. (2012). Copper tolerance and accumulation in two cuprophytes of South Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environmental and Experimental Botony, 84, 11–16. https://doi.org/10.1016/j.envexpbot.2012.04.012

    Article  CAS  Google Scholar 

  • Gao, X., Avellan, A., Laughton, S., Vaidya, R., Rodrigues, S. M., Casman, E. A., & Lowry, G. V. (2018). CuO nanoparticle dissolution and toxicity to wheat (Triticum aestivum) in rhizosphere soil. Environmental Science and Technology, 52, 2888–2897. https://doi.org/10.1021/acs.est.7b05816

    Article  CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresource and Technology, 77, 229–236. https://doi.org/10.1016/S0960-8524(00)00108-5

    Article  CAS  Google Scholar 

  • Garbisu, C., & Alkorta, I. (2003). Basic concepts on heavy metal soil bioremediation. European Journal of Mineral Processing and Environmental Protection, 3, 58–66.

    Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In: A. Klute (Ed.) Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods (pp. 383–411). American Society of Agronomy Inc., Soil Science Society of America Inc. doi:https://doi.org/10.2136/sssabookser5.1.2ed.c15

  • Ghazaryan, K. (2019). Detection of phytoextraction potential of Artemisia vulgaris and Medicago coerulea growing in soils polluted by copper and molybdenum. Biology Journal of Armenia, 71, 26–32. (in Armenian).

    CAS  Google Scholar 

  • Ghazaryan, K., Movsesyan, H., Khachatryan, H., & Ghazaryan, N. (2018). Geochemistry of potentially toxic trace elements in soils of mining area: A case study from Zangezur Copper and Molybdenum Combine, Armenia. Bulletin of Environmental and Contamination Toxicology, 101(6), 732–737. https://doi.org/10.1007/s00128-018-2443-0

    Article  CAS  Google Scholar 

  • Ghazaryan, K. A., Movsesyan, H. S., Khachatryan, H. E., Ghazaryan, N. P., Minkina, T. M., Sushkova, S. N., Mandzhieva, S. S., & Rajput, V. D. (2019). Copper phytoextraction and phytostabilization potential of wild plant species growing in the mine polluted areas of Armenia. Geochemistry: Exploration, Environment, Analysis, 19, 155–163. https://doi.org/10.1144/geochem2018-035

    Article  CAS  Google Scholar 

  • Ghazaryan, K. A., Movsesyan, H. S., Khachatryan, H. E., Minkina, T. M., & Sushkova, S. N. (2017). Copper absorption status of agricultural plant species and their phytoremediation potential. Proceedings of the YSU: Chemical and Biology, 51(2), 106–112.

    Google Scholar 

  • Ghazaryan, K. A., Movsesyan, H. S., Minkina, T. M., Sushkova, S. N., & Rajput, V. D. (2021). The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper and molybdenum polluted soils. Environmental and Geochemical Health. https://doi.org/10.1007/s10653-019-00338-y

    Article  Google Scholar 

  • Giacalone, A., Gianguzza, A., Orecchio, S., Piazzese, D., Dongarrà, G., Sciarrino, S., & Varrica, D. (2005). Metals distribution in the organic and inorganic fractions of soil: A case study on soils from Sicily. Chemical Speciation and Bioavailability, 17(3), 83–93. https://doi.org/10.3184/095422905782774892

    Article  CAS  Google Scholar 

  • Hazrati, S., Farahbakhsh, M., Heydarpoor, G., & Besalatpour, A. A. (2020). Mitigation in availability and toxicity of multi-metal contaminated soil by combining soil washing and organic amendments stabilization. Ecotoxicology and Environmental Safe. https://doi.org/10.1016/j.ecoenv.2020.110807

    Article  Google Scholar 

  • He, Q., Ren, Y., Mohamed, I., Ali, M., Hassan, W., & Zeng, F. (2013). Assessment of trace and heavy metal distribution by four sequential extraction procedures in a contaminated soil. Soil Water Resource, 8(2), 71–76.

    Article  CAS  Google Scholar 

  • Hernández-Allica, J., Becerril, J. M., & Garbisu, C. (2008). Assessment of the phytoextraction potential of high biomass crop plants. Environmental Pollution, 152, 32–40. https://doi.org/10.1016/j.envpol.2007.06.002

    Article  CAS  Google Scholar 

  • Jaime-Pérez, N., Kaftan, D., Bína, D., Bokhari, S. N. H., Shreedhar, S., & Küpper, H. (2019). Mechanisms of sublethal copper toxicity damage to the photosynthetic apparatus of Rhodospirillum rubrum. Biochimica Et Biophysica Acta Bioenergetics, 1860, 640–650. https://doi.org/10.1016/j.bbabio.2019.06.004

    Article  CAS  Google Scholar 

  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical and Exploration, 182, 247–268. https://doi.org/10.1016/j.gexplo.2016.11.021

    Article  CAS  Google Scholar 

  • Kumar, V., Pandita, Sh., Sidhu, G. P. S., Sharma, A., Khanna, K., Kaur, P., Bali, ASh., & Setia, R. (2021). Copper bioavailability, uptake, toxicity and tolerance in plants: A comprehensive review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127810

    Article  Google Scholar 

  • Lange, B., van der Ent, A., Baker, A. J. M., Echevarria, G., Mahy, G., Malaisse, F., Meerts, P., Pourret, O., Verbruggen, N., & Faucon, M. P. (2017). Copper and cobalt accumulation in plants: A critical assessment of the current state of knowledge. New Phytology, 213(2), 537–551. https://doi.org/10.1111/nph.14175

    Article  CAS  Google Scholar 

  • Leštan, D., Luo, C., & Li, X. (2008). The use of chelating agents in the remediation of metal-contaminated soils: A review. Environmental Pollution, 153, 3–13. https://doi.org/10.1016/j.envpol.2007.11.015

    Article  CAS  Google Scholar 

  • Liphadzi, M. S., Kirkham, M. B., Mankin, K. R., & Paulsen, G. M. (2003). EDTA-assisted heavy metals uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant and Soil, 257, 171–182.

    Article  CAS  Google Scholar 

  • Liu, J., Wang, J., Lee, S., & Wen, R. (2018). Copper-caused oxidative stress triggers the activation of antioxidant enzymes via ZmMPK3 in maize leaves. PLoS ONE. https://doi.org/10.1371/journal.pone.0203612

    Article  Google Scholar 

  • Luo, C., Shen, Z., Li, X., & Baker, A. J. M. (2006). Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, 63, 1773–1784. https://doi.org/10.1016/j.chemosphere.2005.09.050

    Article  CAS  Google Scholar 

  • Mackie, K. A., Müller, T., & Kandeler, E. (2012). Remediation of copper in vineyards: A mini review. Environmental Pollution, 167, 16–26. https://doi.org/10.1016/j.envpol.2012.03.023

    Article  CAS  Google Scholar 

  • Mahar, A., Wang, P., Ali, A., Awasthi, M. K., Lahori, A. H., Wang, Q., Li, R., & Zhang, Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicology and Environmental Safety, 126, 111–121. https://doi.org/10.1016/j.ecoenv.2015.12.023

    Article  CAS  Google Scholar 

  • Manohari, R., & Yogalakshmi, K. N. (2021). Brevundimonas diminuta MYS6 associated Helianthus annuus L. for enhanced copper phytoremediation. Chemosphere. doi:https://doi.org/10.1016/j.chemosphere.2020.128195

  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232, 207–214. https://doi.org/10.1023/A:1010358708525

    Article  CAS  Google Scholar 

  • Nazir, F., Hussain, A., & Fariduddin, Q. (2019). Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, 230, 544–558. https://doi.org/10.1016/j.chemosphere.2019.05.001

    Article  CAS  Google Scholar 

  • Orlov, D. S., Sadovnikova, L. K., & Sukhanova, N. I. (2005). Soil chemistry. Visshaya shkola, 558 p. (In Russian)

  • Otunola, B. O., & Ololade, O. O. (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental and Technology Innovation. https://doi.org/10.1016/j.eti.2020.100692

    Article  Google Scholar 

  • Pajević, S., Borišev, M., Nikolić, N., Arsenov, D. D., Orlović, S., & Župunski, M. (2016). Phytoextraction of heavy metals by fast-growing trees: a review. In: A. Ansari, S. Gill, R. Gill, G. Lanza and L. Newman (Eds.), Phytoremediation (pp. 29–64). Springer, Cham. doi:https://doi.org/10.1007/978-3-319-40148-5_2

  • Parmar, S., & Singh, V. (2015). Phytoremediation approaches for heavy metal pollution: A review. Journal of Plant Science and Research, 2(2), 139–146.

    Google Scholar 

  • Peters, R. W. (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66, 151–210. https://doi.org/10.1016/S0304-3894(99)00010-2

    Article  CAS  Google Scholar 

  • Pinto, A. P., de Varennes, A., Lopes, M. E., & Martins Teixeira, D. (2016). Biological approaches for remediation of metal-contaminated sites. In A. A. Ansari, S. S. Gill, R. Gill, G. Lanza, & L. Newman (Eds.), Phytoremediation: Management of environmental contaminants (Vol. 3, pp. 65–112). Springer International Publishing.

    Chapter  Google Scholar 

  • Qu, J., Yuan, X., Cong, Q., & Wang, S. (2008). Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES. Spectroscopy and Spectral Analysis, 28, 2674–2678.

    CAS  Google Scholar 

  • Quartacci, M. F., Argilla, A., Baker, A. J. M., & Navari-Izzo, F. (2006). Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere, 63, 918–925.

    Article  CAS  Google Scholar 

  • Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V. S., Purvis, W. O., Ghazaryan, K. A., & Movsesyan, H. S. (2018a). Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. Environmental Nanotechnology, Monitoring and Management, 9, 76–84. https://doi.org/10.1016/j.enmm.2017.12.006

    Article  Google Scholar 

  • Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., Duplii, N., Fedorenko, G., Dvadnenko, K., & Ghazaryan, K. (2018b). Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Science and Total Environment, 645, 1103–1113. https://doi.org/10.1016/j.scitotenv.2018.07.211

    Article  CAS  Google Scholar 

  • Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., Ghazaryan, K., Movsesyan, H., & Barsova, N. (2020). ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environmental and Geochemical Health, 2020(42), 147–158. https://doi.org/10.1007/s10653-019-00317-3

    Article  CAS  Google Scholar 

  • Ramanjaneyulu, A. V., Neelima, T. L., Madhavi, A., & Ramprakash, T. (2017). Phytoremediation: An overview. In H. G. Rodríguez, R. Maiti, & A. K. Thakur (Eds.), Applied Botany (pp. 42–84). American Academic Press.

    Google Scholar 

  • Reeves, R. D., & Baker, A. J. M. (2000). Metal accumulating plants. In I. Raskin & B. D. Ensley (Eds.), Phytoremediation of toxic metals: Using plants to clean up the environment (pp. 193–220). Wiley.

    Google Scholar 

  • Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytology, 218, 407–411. https://doi.org/10.1111/nph.14907

    Article  Google Scholar 

  • Ro, H. M., Choi, H. J., Yun, S. I., & Park, J. S. (2018). Organic amendment-driven removal and speciation of metals using wormwood in two contrasting soils near an abandoned copper mine. Horticulture, Environment, and Biotechnology, 59, 775–786. https://doi.org/10.1007/s13580-018-0073-4

    Article  CAS  Google Scholar 

  • Sajad, M. A., Khan, M. S., Bahadur, S., Naeem, A., Ali, H., Batool, F., Shuaib, M., Khan, M. A. S., & Batool, S. (2020). Evaluation of chromium phytoremediation potential of some plant species of Dir Lower, Khyber Pakhtunkhwa. Pakistan. Acta Ecologica Sinica, 40(2), 158–165. https://doi.org/10.1016/j.chnaes.2019.12.002

    Article  Google Scholar 

  • Sakakibara, M., Ohmori, Y., Ha, N. T. H., Sano, S., & Sera, K. (2011). Phytoremediation of heavy metal contaminated water and sediment by Eleocharis acicularis. Clean-Soil Air Water, 39, 735–741. https://doi.org/10.1002/clen.201000488

    Article  CAS  Google Scholar 

  • Saleem, M. H., Ali, S., Rehman, M., Rizwan, M., Kamran, M., Mohameda, I. A. A., Khan, Z., Bamagoos, A. A., Alharby, H. F., Hakeem, K. R., & Liu L. (2020). Individual and combined application of EDTA and citric acid assisted phytoextraction of copper using jute (Corchorus capsularis L.) seedlings. Environmental Technology Innovation. doi:https://doi.org/10.1016/j.eti.2020.100895

  • Shabbir, Z., Sardar, A., Shabbir, A., Abbas, G. H., Shamshad, S., Khalid, S., Natasha, M. G. H., Dumat, C., & Shahid, M. (2020). Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.127436

    Article  Google Scholar 

  • Shibata, M., Konno, T., Akaike, R., Xu, Y., Shen, R., & Ma, J. F. (2007). Phytoremediation of Pb contaminated soil with polymer-coated EDTA. Plant and Soil, 290, 201–208. https://doi.org/10.1007/s11104-006-9152-x

    Article  CAS  Google Scholar 

  • Singer, A. C., Bell, T., Heywood, C. A., Smith, J. A. C., & Thompson, I. P. (2007). Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: Evidence of histidine as a measure of phytoextractable nickel. Environmental Pollution, 147, 74–82. https://doi.org/10.1016/j.envpol.2006.08.029

    Article  CAS  Google Scholar 

  • Singh, V., & Bhargava, M. (2017). Phytomining: Principles and applications. In A. Bhargava & S. Srivastava (Eds.), Biotechnology: Recent trends and emerging dimensions (pp. 141–159). CRC Press.

    Google Scholar 

  • Sullivan, M., III. (2017). Fundamentals of statistics: Informed decisions using data (5th ed.). Pearson.

    Google Scholar 

  • Turgut, C., Pepe, M. K., & Cutright, T. J. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 131, 147–154. https://doi.org/10.1016/j.envpol.2004.01.017

    Article  CAS  Google Scholar 

  • Usman, K., Al-Ghouti, M. A., & Abu-Dieyeh, M. H. (2018). Phytoremediation: Halophytes as promising heavy metal hyperaccumulators. In H. E. M. Saleh & R. F. Aglan (Eds.), Heavy Metals (pp. 201–217). IntechOpen.

    Google Scholar 

  • Wan, X., Lei, M., & Chen, T. (2016). Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Science of the Total Environmetal, 563–564, 796–802. https://doi.org/10.1016/j.scitotenv.2015.12.080

    Article  CAS  Google Scholar 

  • Wang, S., Nan, Z., Liu, X., Li, Y., Qin, S., & Ding, H. (2009). Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China. Geoderma, 152, 290–295. https://doi.org/10.1016/j.geoderma.2009.06.012

    Article  CAS  Google Scholar 

  • Wu, F. B., Dong, J., Qian, Q. Q., & Zhang, G. P. (2005). Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere, 60, 1437–1446. https://doi.org/10.1016/j.chemosphere.2005.01.071

    Article  CAS  Google Scholar 

  • Wu, Q. T., Wei, Z. B., & Ouyang, Y. (2007). Phytoextraction of metal-contaminated soil by Sedum alfredii H: Effects of chelator and co-planting. Water Air Soil Pollution, 180, 131–139. https://doi.org/10.1007/s11270-006-9257-1

    Article  CAS  Google Scholar 

  • Xu, D., Fu, R., Liu, H., & Guo, X. (2021). Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. Journal of Cleaning Production. https://doi.org/10.1016/j.jclepro.2020.124989

    Article  Google Scholar 

  • Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C., & Wang, L. (2015). Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). International Journal of Environmental Research and Public Health, 12, 15100–15109. https://doi.org/10.3390/ijerph121214963

    Article  CAS  Google Scholar 

  • Yruela, I. (2009). Copper in plants: Acquisition, transport and interactions. Functional and Plant Biology, 36, 409–430. https://doi.org/10.1071/FP08288

    Article  CAS  Google Scholar 

  • Zaheer, I. E., Ali, S., Rizwan, M., Farid, M., Shakoor, M. B., Gill, R. A., Najeeb, U., Iqbal, N., & Ahmad, R. (2015). Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicology and Environmental Safety, 120, 310–317. https://doi.org/10.1016/j.ecoenv.2015.06.020

    Article  CAS  Google Scholar 

  • Zemberyová, M., Barteková, J., & Hagarová, I. (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta, 70, 973–978.

    Article  Google Scholar 

  • Zhang, W., Yu, T., Yang, X., & Li, H. (2020). Speciation, transformation, and accumulation of manure-derived Cu and Zn in the soil-rice system. Soil Sediment Contamination, 29(1), 43–52. https://doi.org/10.1080/15320383.2019.1670135

    Article  CAS  Google Scholar 

  • Zhang, Y., Deng, H., Xue, H. J., Chen, X. Y., Cai, C., Deng, Y. C., & Zhong, W. H. (2016). The effects of soil microbial and physiochemical properties on resistance and resilience to copper perturbation across China. CATENA, 147, 678–685.

    Article  CAS  Google Scholar 

  • Zhang, Z., Ke, M., Qu, Q., Peijnenburg, W., Lu, T., Zhang, Q., Ye, Y., Xu, P., Du, B., Sun, L., & Qian, H. (2018). Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environmental Pollution, 239, 689–697. https://doi.org/10.1016/j.envpol.2018.04.066

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the RA Science Committee and the Russian Foundation for Basic Research (RF) in the frames of the joint research project SCS No 20RF-036 and RFBR No 20-55-05014 accordingly.

Author information

Authors and Affiliations

Authors

Contributions

Karen Ghazaryan—Supervision, Conceptualization, Project administration, Data curation, Funding acquisition, Methodology, Writing—original draft. Hasmik Movsesyan—Conceptualization, Formal analysis, Funding acquisition, Resources, Investigation, Writing—review and editing. Tatiana Minkina—Conceptualization, Methodology, Formal analysis, Writing—Review and Editing. Dina Nevidomskaya—Investigation, Data curation, Funding acquisition, Methodology. Vishnu Rajput—Investigation, Data curation, Methodology, Visualization.

Corresponding author

Correspondence to Karen A. Ghazaryan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal research

In our experiments, the animals were not used. The studies were implemented only on plants.

Consent for publication

The authors agree to publish this manuscript.

Consent to participate

The authors agree to participate in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazaryan, K.A., Movsesyan, H.S., Minkina, T.M. et al. Phytoremediation of copper-contaminated soil by Artemisia absinthium: comparative effect of chelating agents. Environ Geochem Health 44, 1203–1215 (2022). https://doi.org/10.1007/s10653-021-01151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01151-2

Keywords

Navigation