Skip to main content
Log in

Application of a soil quality assessment system using ecotoxicological indicators to evaluate contaminated and remediated soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The deterioration of soil quality owing to human activities results in adverse effects on the soil ecosystem. This study developed a systematic method to quantitatively evaluate soil quality based on physical, chemical, biological, and ecotoxicological indicators and proposed the soil quality assessment and management system. This system consists of step-by-step processes, including indicator classification, indicator measurement, scoring and weighting, and soil quality index (SQI) calculation. The novel strategy included the usage of authentic ecotoxicological indicators for realistically interpreting soil quality assessment results. This study used five ecotoxicological indicators, including earthworm survival, enzyme activities, nematode reproduction, plant germination and growth, soil algal biomass, and soil algal photosynthetic capacity. Relatively higher SQI values than those corresponding to the actual soil quality status would be obtained without considering the ecotoxicological indicators. We conclude that the use of ecotoxicological indicator can help in soil quality assessment even under extreme soil quality conditions, such as highly contaminated or physically and chemically remediated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data and information are available by contacting the author (anyjoo@konkuk.ac.kr).

References

  • Abumaizar, R. J., & Smith, E. H. (1999). Heavy metal contaminants removal by soil washing. Journal of Hazardous Materials,70, 71–86.

    CAS  Google Scholar 

  • An, Y.-J., Kampbell, D. H., & McGill, M. E. (2002). Toxicity of methyl tert-butyl ether to plants (Avena sativa, Zea mays, Triticum asestivum, and Lactuca sativa). Environmental Toxicolology and Chemistry,21, 1679–1682.

    CAS  Google Scholar 

  • An, Y.-J., & Kim, M. (2009). Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere,74, 654–659.

    CAS  Google Scholar 

  • Andrews, S. S., & Carroll, C. R. (2001). Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications,11, 1573–1585.

    Google Scholar 

  • Andrews, S. S., Kareln, D. L., & Cambardella, C. A. (2004). The soil management assessment framework: A quantitative soil quality evaluation method. Soil Science Society of America Journal,68, 1945–1962.

    CAS  Google Scholar 

  • Andrews, S. S., Mitchell, J. P., Mancinelli, R., Karlen, D. L., Hartz, T. K., Horwath, W. R., et al. (2002). On-farm assessment of soil quality in California’s central valley. Agronomy Journal,94, 12–23.

    Google Scholar 

  • Aparicio, V., & Costa, J. L. (2007). Soil quality indicators under continuous cropping systems in the Argentinean pampas. Soil Tillage Research,96, 155–165.

    Google Scholar 

  • Arshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystem & Environment,88, 153–160.

    Google Scholar 

  • Bone, J., Head, M., Barraclough, D., Archer, M., Scheib, C., Flight, D., et al. (2010). Soil quality assessment under emerging regulatory requirements. Environmental International,36, 609–622.

    CAS  Google Scholar 

  • Chae, Y., Cui, R., Kim, S. W., An, G., Jeong, S.-W., & An, Y.-J. (2017). Exoenzyme activity in contaminated soils before and after soil washing: ß-glucosidase activity as a biological indicator of soil health. Ecotoxicology and Environmetal Safefy,135, 368–374.

    CAS  Google Scholar 

  • Doran, J. W., Coleman, D. C., Bezdicek, D. F., & Stewart, B. A. (1994). Defining soil quality for a sustainable environment (Vol. 35). Madison: SSSA Special Publication, Soil Science Society of America.

    Google Scholar 

  • Doran, J. W., & Jones, A. J. (1996). Methods for assessing soil quality (Vol. 49). Madison: Soil Science Society of America Special Publication, Soil Science Society of America.

    Google Scholar 

  • Doran, J. W., & Parkin, B. T. (1994). Defining and assessing soil quality. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, & B. A. Stewart (Eds.), Defining soil quality for a sustainable environment (pp. 3–21). Madison: Soil Science Society of America Inc.

    Google Scholar 

  • Elliot, E. T., Anderson, R. V., Coleman, D. C., & Cole, C. V. (1980). Habitable pore space and microbial trophic interactions. Oikos,35, 327–335.

    Google Scholar 

  • European Chemicals Bureau (ECB). (2003). Technical guidance document on risk assessment. EUR 20418 En/2. European Commission, Joint Research Centre.

  • Filip, Z. (2002). International approach to assessing soil quality by ecologically-related biological parameters. Agriculture, Ecosystems & Environment,88, 169–174.

    Google Scholar 

  • Glover, J. D., Reganold, J. P., & Andrews, P. K. (2000). Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington state. Agriculture, Ecosystem & Environment,80, 29–45.

    Google Scholar 

  • Govaerts, B., Sayre, K. D., & Deckers, J. (2006). A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Tillage Research,87, 163–174.

    Google Scholar 

  • Grossman, R. B., Harms, D. S., Kingsbury, D. S., Shaw, R. K., & Jenkins, A. B. (2001). Assessment of soil organic carbon using the U.S. Soil Survey. In R. Lal, et al. (Eds.), Assessment methods for soil carbon (pp. 87–104). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Havlin, J. L., Tisdale, S. K., Nelson, W. K., & Beaton, J. D. (1999). Soil fertility and fertilizers: An introduction to nutrient management (6th ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Herrick, J. E., Brown, J. R., Tugel, A. J., Shave, P. L., & Havstad, K. M. (2002). Application of soil quality to monitoring and management: Paradigms from rangeland ecology. Agronomy Journal,94, 3–11.

    Google Scholar 

  • Höss, S., Jänsch, S., Junker, T., Moser, T., & Römbke, J. (2009). Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. Ecotoxicology and Environmental Safety,72, 1811–1818.

    Google Scholar 

  • International Organization for Standardization (ISO). (2010). Water quality determination of the toxic effect of sediment and soil samples on growth, fertility and reproduction of Caenorhabditis elegans (Nematoda). ISO 10872:2010. Geneva.

  • International Organization for Standardization (ISO). (2017). Soil quality—Procedure for site-specific ecological risk assessment of soil contamination (Soil quality TRIAD approach). ISO,19204, 2017.

    Google Scholar 

  • Jänsch, S., Amorim, M. J. B., & Römbke, J. (2005). Identification of the ecological requirements of important terrestrial ecotoxicological test species. Environmental Reviews,13, 51–83.

    Google Scholar 

  • Jastrow, J. D. (1996). Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology & Biochemistry,28, 665–676.

    CAS  Google Scholar 

  • Karlen, D. L., Ditzler, C. A., & Andrews, S. S. (2003). Soil quality: Why and how? Geoderma,114, 145–156.

    CAS  Google Scholar 

  • Karlen, D. L., & Scott, D. E. (1994). A framework for evaluating physical and chemical indicators of soil quality. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, & B. A. Stewart (Eds.), Defining soil quality for a sustainable environment (pp. 53–72). Madison: ASA and SSSA.

    Google Scholar 

  • Kim, S. W., Chae, Y., Moon, J., Kim, D., Cui, R., An, G., et al. (2017). In situ evaluation of crop productivity and bioaccumulation of heavy metals in paddy soils after remediation of metal contaminated soils. Journal of Agricultural and Food Chemistry,65, 1239–1246.

    CAS  Google Scholar 

  • Kim, S. W., Moon, J., & An, Y.-J. (2018). Development of a nematode offspring counting assay for rapid and simple soil toxicity assessment. Environmental Pollution,236, 91–99.

    CAS  Google Scholar 

  • Ko, I., Chang, Y. Y., Lee, C. H., & Kim, K. W. (2005). Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. Journal of Hazardous Materials,127, 1–13.

    CAS  Google Scholar 

  • Kwak, J. I., Kim, S. W., & An, Y.-J. (2014). A new and sensitive method for measuring in vivo and in vitro cytotoxicity in earthworm coelomocytes by flow cytometry. Environmental Research,134, 118–126.

    CAS  Google Scholar 

  • Larson, W. E., & Pierce, F. J. (1994). The dynamics of soil quality as a measure of sustainable management. Defining soil quality for a sustainable environment (pp. 37–52). Madison: Soil Science Society of America.

    Google Scholar 

  • Li, P., Zhang, T., Wang, X., & Yu, D. (2013). Development of biological soil quality indicator system for subtrophical China. Soil Tillage Research,126, 112–118.

    Google Scholar 

  • Løkke, H., & Van Gestel, C. A. M. (1998). Handbook of soil invertebrate toxicity. New York: Wiley.

    Google Scholar 

  • Mashela, W. P., & Nthangeni, M. E. (2002). Interaction effects of citrus rootstocks, salinity and Tylenchulus semipenetrans parasitism on osmotically active ions. Journal of Phytopathology,150, 60–64.

    CAS  Google Scholar 

  • Menta, C., Conti, F. D., Pinto, S., & Bodini, A. (2018). Soil biological quality index (QBS-ar): 15 years of application at global scale. Ecological Indicators,85, 773–780.

    CAS  Google Scholar 

  • Nam, S. H., & An, Y.-J. (2017). A rapid screening method to assess soil algal toxicity: Non-destructive sampling of algal cells using culture medium extraction. Applied Soil Ecology,120, 143–152.

    Google Scholar 

  • National Environment Protection Council (NEPC). (2011). Guideline on methodology to derive ecological investigation levels in contaminated soils. Natl. Environ. Protect. (Assess. site Contam.) Meas. 1999. Schedule B5b.

  • Organization for Economic Cooperation and Development (OECD). (1984). Earthworm, acute toxicity tests. OECD guideline for testing of chemicals 207. Paris: OECD.

  • Owojori, O. J., Reinecke, A. J., & Rozanov, A. B. (2009). The combined stress effects of salinity and copper on the earthworm Eisenia fetida. Applied Soil Ecology,41, 277–285.

    Google Scholar 

  • Paoletti, G. P., Sommaggio, D., & Fusaro, S. (2013). Propostadi IndicediQualitàBiologicadel Suolo (QBS-e) basato sui Lombrichi e applicato agli. Agroecosistemi BiologiaAmbientale,27, 25–43.

    Google Scholar 

  • Parisi, V. (2001). La qualità biologica del suolo. Un metodo basato sui microartropodi. Acta Naturalia de L’Ateneo Parmense,37, 105–114.

    Google Scholar 

  • Parisi, V., & Menta, C. (2008). Microarthropods of the soil: Convergence phenomena and evaluation of soil quality using QBS-ar and QBS-c. Fresneius Environmental Bulletin,17, 1170–1174.

    CAS  Google Scholar 

  • Parisi, V., Menta, C., Gardi, C., Jacomini, C., & Mozzanica, E. (2005). Microarthropod communites as a tool to assess soil quality and biodiversity: A new approach in Italy. Agriculture, Ecosystems & Environment,105, 323–333.

    Google Scholar 

  • Qi, Y., Darilek, J. L., Huang, B., Zhao, Y., Sun, W., & Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma,149, 325–334.

    Google Scholar 

  • Reed, B. E., Carriere, P. C., & Moore, R. (1996). Flushing of a Pb(II) contaminated soil using HCl, EDTA, and CaCl2. Journal of Environmental Engineering,122, 48–50.

    CAS  Google Scholar 

  • Rural Development Administration (RDA). (2010). Standards for fertilizer prescription of crops. Suwon: National Academy of Agricultural Science.

    Google Scholar 

  • Shukla, M. K., Lal, R., & Ebinger, M. (2006). Determining soil quality indicators by factor analysis. Soil & Tillage Research,87, 194–204.

    Google Scholar 

  • Smit, C. E., & Van Gestel, C. A. M. (1998). Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environmental Toxicology and Chemistry,17, 1132–1141.

    CAS  Google Scholar 

  • Smith, J. L., Halvorson, J. J., & Papendick, R. I. (1993). Using multiple-variable indicator kriging for evaluating soil quality. Soil Science Society of America Journal,57, 743–749.

    Google Scholar 

  • Sun, B., Zhou, S., & Zhao, Q. (2003). Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma,115, 58–99.

    Google Scholar 

  • Syvertsen, J., & Yoseph, L. (2005). Salinity interactions with other abiotic and biotic stresses in citrus. HortTechnology,15, 100–103.

    Google Scholar 

  • United States Department of Agriculture (USDA). (1966). Aggregate stability of soils from western United States and Canada, Technical Bulletin No. 1335. U.S.Gov. Print. Office, Washington, D.C.

  • United States Department of Agriculture (USDA). (2001). Guidelines for soil quality assessment in conservation planning (Friedman et al.). Soil Quality Institute, Washington, DC.

  • Van Benschoten, J. E., Reed, B. E., Matsumoto, M. R., & McGarvey, P. J. (1994). Metal removal by soil washing for an iron oxide coated sandy soil. Water Environmental Research,66, 168–174.

    Google Scholar 

  • Volchko, Y., Norrman, J., Rosén, L., & Norberg, T. (2014a). SF-box—A tool for evaluating the effects on soil functions in remediation projects. Integrated Environmental Assessment and Management,10, 566–575.

    Google Scholar 

  • Volchko, Y., Norrman, J., Rosén, L., & Norberg, T. (2014b). A minimum data set for evaluating the ecological soil functions in remediation projects. Journal of Soils and Sediments: DOI. https://doi.org/10.1007/s11368-014-0939-8.

    Book  Google Scholar 

  • Vreeken-Buijs, M. J., Hassink, J., & Brussaard, L. (1998). Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use. Soil Biology & Biochemistry,30, 97–109.

    CAS  Google Scholar 

  • Wang, X. J., & Gong, Z. T. (1998). Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China. Geoderma,81, 339–355.

    Google Scholar 

  • Zhang, P., Zou, B., Li, N., & Li, Z. A. (2009). Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environmental Geochemistry and Health,31, 707–715.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Science, ICT, and Future Planning through the National Research Foundation of Korea (2016R1A2B3010445, 2018R1A2B6006139). This work was also supported by Korea Environment Industry and Technology Institute (KEITI) funded by Korea Ministry of Environment (MOE) (Nos. 2016001970001, 2014000560001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seung-Woo Jeong or Youn-Joo An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.W., Jeong, SW. & An, YJ. Application of a soil quality assessment system using ecotoxicological indicators to evaluate contaminated and remediated soils. Environ Geochem Health 42, 1681–1690 (2020). https://doi.org/10.1007/s10653-019-00321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00321-7

Keywords

Navigation