Skip to main content
Log in

Unraveling the antibacterial mode of action of a clay from the Colombian Amazon

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Natural antibacterial clays can inhibit growth of human pathogens; therefore, understanding the antibacterial mode of action may lead to new applications for health. The antibacterial modes of action have shown differences based on mineralogical constraints. Here we investigate a natural clay from the Colombian Amazon (AMZ) known to the Uitoto natives as a healing clay. The physical and chemical properties of the AMZ clay were compared to standard reference materials: smectite (SWy-1) and kaolinite (API #5) that represent the major minerals in AMZ. We tested model Gram-negative (Escherichia coli ATCC #25922) and Gram-positive (Bacillus subtilis ATCC #6633) bacteria to assess the clay’s antibacterial effectiveness against different bacterial types. The chemical and physical changes in the microbes were examined using bioimaging and mass spectrometry of clay digests and aqueous leachates. Results indicate that a single dose of AMZ clay (250 mg/mL) induced a 4–6 order of magnitude reduction in cell viability, unlike the reference clays that did not impact bacterial survival. AMZ clay possesses a relatively high specific surface area (51.23 m2/g) and much higher total surface area (278.82 m2/g) than the reference clays. In aqueous suspensions (50 mg clay/mL water), soluble metals are released and the minerals buffer fluid pH between 4.1 and 4.5. We propose that the clay facilitates chemical interactions detrimental to bacteria by absorbing nutrients (e.g., Mg, P) and potentially supplying metals (e.g., Al) toxic to bacteria. This study demonstrates that native traditional knowledge can direct scientific studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aran, D., Maul, A., & Masfaraud, J. F. (2008). A spectrophotometric measurement of soil cation exchange capacity based on cobaltihexamine chloride absorbance. Geoscience, 340(12), 865–870.

    Article  CAS  Google Scholar 

  • Bennett, P. C., Engel, A. S., & Roberts, J. A. (2006). Counting and imaging bacteria on mineral surfaces. In P. A. Maurice & L. A. Warren (Eds.), Methods of Investigating Microbial-Mineral Interactions, CMS Workshop Lectures (Vol. 14, pp. 37–78). Chantilly: The Clay Mineral Society.

  • Beveridge, T., & Koval, S. F. (1981). Binding of metals to cell envelopes of Escherichia coli K-12. Applied and Environmental Microbiology, 42, 325–335.

    CAS  Google Scholar 

  • Beveridge, T. J., & Murray, R. G. E. (1980). Sites of metal deposition in the cell wall of Bacillus subtilis. Journal of Bacteriology, 141, 876–887.

    CAS  Google Scholar 

  • Bhattacharjee, S., Ko, C. H., & Elimelech, M. (1998). DLVO interaction between rough surfaces. Langmuir, 14, 3365–3375.

    Article  CAS  Google Scholar 

  • Borrok, D., Turner, B. F., & Fein, J. (2005). A universal surface complexation framework for modelling proton binding onto bacterial surfaces in geologic settings. American Journal of Science, 305, 826–853.

    Article  CAS  Google Scholar 

  • Boyanov, M., Kelly, S. D., Kemner, K. M., Bunker, B. A., Fein, J. B., & Fowle, D. A. (2003). Adsorption of cadmium to Bacillus subtilis bacterial cell walls: a pH-dependent X-ray absorption fine structure spectroscopy study. Geochimica et Cosmochimica Acta, 67(18), 3299–3311.

    Article  CAS  Google Scholar 

  • Bruins, M., Kapil, S., & Oehmel, F. W. (2000). Microbial resistance to metals in the environment. Review. Ecotoxicology and Environmental Safety, 45, 198–207.

  • Brunet de Courrsou, L. (2002). Study group report on Buruli ulcer treatment with clay. Geneva, Switzerland.: 5th WHO Advisory Group Meeting on Buruli Ulcer.

    Google Scholar 

  • Cao, Y., Wei, X., Cai, P., Huang, Q., Rong, X., & Liang, W. (2011). Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide. Colloids and Surfaces B: Biointerfaces, 83, 122–127.

    Article  CAS  Google Scholar 

  • Carter, D. L., Heilman, M. D., & Gonzales, C. D. (1965). Ethylene glycol monoethyl ether for determining surface area of silicate minerals. Soil Science, 100(5), 356–360.

    Article  CAS  Google Scholar 

  • Cunningham, T. B., Koehl, J. L., Summers, J. S., & Haydel, S. E. (2010). pH-dependent metal ion toxicity influences of the antibacterial activity of two natural mineral mixtures. PLoS-ONE, 5, e9456.

    Article  Google Scholar 

  • de Kerchove A., & Elimelech, M. (2005). Relevance of electrokinetic theory for “soft” particles to bacterial cells: Implications for bacterial adhesion. Langmuir, 25, 6462–6472.

  • Dogan, A. D., Dogan, M., Onal, M., Sarikaya, Y., Aburub, A., & Wurster, D. E. (2006). Baseline studies of the clay minerals society source clays: Specific surface area by the Brunauer Emmett Teller (BET) method. Clays and Clay Minerals, 54(1), 62–66.

    Article  CAS  Google Scholar 

  • Eberl, D. D. (2003). Users Guide to Rockjock: A program for determining quantitative mineralogy from powder X-ray diffraction data. (Open file report no. 03-78) USGS.

  • Fein, J., Daughney, C., Yee, N., & Davis, T. A. (1997). A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochimica et Cosmochimica Acta, 67(16), 3319–3328.

    Article  Google Scholar 

  • Finney, L., & O’Halloran, T. (2003). Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors. Science, 300, 931–935.

    Article  CAS  Google Scholar 

  • Garcidueñas-Pina, R., & Cervantes, C. (1995). Microbial interactions with aluminum. BioMetals, 9, 311–316.

    Article  Google Scholar 

  • Geesey, G. G., Jang, L., Jolley, J. G., Hankins, M. R., Iwaoka, T., & Griffiths, P. R. (1988). Binding of metal-ions by extracellular polymers of biofilm bacteria. Water Science Technology, 20, 161–165.

    CAS  Google Scholar 

  • Gilbert, P., Abretch, M., & Frazer, B. (2005). The organic-mineral interface in biominerals. Reviews in Mineralogy and Geochemistry, 59, 157–185.

    Article  CAS  Google Scholar 

  • Gregory, J. (1981). Approximate expressions for retarded van der Waals interaction. Journal of Colloid and Interface Science, 83, 138–145.

    Article  CAS  Google Scholar 

  • Hanaichi, T., Sato, T., Iwamoto, T., Malavasi-Yamashiro, J., Hoshing, M., & Mizuno, N. (1986). A stable Lead by modification of Sato’s method. Journal of Electron Microscopy, 35(3), 304–306.

    CAS  Google Scholar 

  • Hancock, R. E. (1984). Alterations in outer membrane permeability. Annual Review Microbiology., 38, 237–264.

    Article  CAS  Google Scholar 

  • Harrison, J. J., Ceri, H., & Turner, R. J. (2007). Multimetal resistance and tolerance in microbial biofilms. Natural Review in Microbiology, 5, 928–938.

    Article  CAS  Google Scholar 

  • Hogg, R., Healy, T., & Fuerstenau, D. (1966). Mutual Coagulation of Colloidal Dispersions. Transactions of the Faraday Society, 62, 1638–1650.

    Article  CAS  Google Scholar 

  • Hoorn, C. (1994). Fluvial palaeoenvironments in the intracratonic Amazonas Basin (Early Miocene-early Middle Miocene, Colombia). Palaeogeography, Palaeoclimatology, Palaeoecology, 109, 1–54.

    Article  Google Scholar 

  • Hoorn, C., & Wesselingh, F. P. (2010). Introduction: Amazonia, landscape and species evolution. In C. Hoorn & F. P. Wesselingh (Eds.), Amazonia: Landscape and species evolution. A look into the past (1st ed.). Malden: Blackwell Publishing Ltd.

    Google Scholar 

  • Imlay, J. J. (1988). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240(4852), 640–642.

    Article  CAS  Google Scholar 

  • Israelachvili, J. (2007). Intermolecular and surface forces (2nd ed.). California: Academic Press.

    Google Scholar 

  • Jackson, M. L. (1979). Soil chemical analysis—Advanced course. Madison, WI: Jackson, M. L.

    Google Scholar 

  • Jiang, W., Saxena, A., Song, B., Ward, B., Beveridge, T., & Myneni, S. (2004). Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir, 20, 11433–11442.

    Article  CAS  Google Scholar 

  • Kerr, P. F., Hamilton, P. K., Kulp, J. L., & Institute, American Petroleum. (1951). Preliminary reports reference clay minerals: American Petroleum Institute research project 49. New York: Columbia University.

    Google Scholar 

  • Kibanova, D., Nieto-Camacho, A., & Cervini-Silva, J. (2009). Lipid peroxidation induced by expandable clay minerals. Environmental Science and Technology, 43, 7550–7555.

    Article  CAS  Google Scholar 

  • Kimura, T., & Nishioka, H. (1997). Intracellular generation of superoxide by copper sulphate in Escherichia coli. Mutation Research, 389, 237–242.

    Article  CAS  Google Scholar 

  • MacDonald, T. L., & Martin, R. B. (1988). Aluminum ion in biological systems. Trends in Biochemical Sciences, 13, 15–19.

    Article  CAS  Google Scholar 

  • Moll, W. J. (2001). Base line studies for the clay minerals society source clays: geological origin. Clays and Clay Minerals, 49(5), 374–380.

    Article  CAS  Google Scholar 

  • Molloy, M., & Kerr, P. (1961). Diffractometer patterns of A.P.I. reference clay minerals. The American Mineralogist, 46, 583–605.

    CAS  Google Scholar 

  • Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press.

    Google Scholar 

  • Morrison, K. D., Underwood, J., Metge, D., Eberl, D., & Williams, L. (2014). Mineralogical variables that control the antibacterial effectiveness of a natural clay deposit. Environmental Geochemistry and Health. doi:10.1007/s10653-013-9585-0.

    Google Scholar 

  • NCCLS. (2000). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard. NCCLS Document M7-A5 (ISNB 1-56238-394-9) fifth. NCCLS, Pennsylvania, USA.

  • Neal, A. (2008). What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology, 17, 363–371.

    Article  Google Scholar 

  • Nel, A. X. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    Article  CAS  Google Scholar 

  • Neveu, M., Poret-Peterson, A., Lee, Z., Anbar, A., & Elser, J. (2014). Prokaryotic cells separated from sediments are suitable for elemental composition analysis. Limnology and Oceanography methods, 12, 519–529.

    Article  CAS  Google Scholar 

  • Nies, D. (1999). Microbial heavy-metal resistance. Applied Microbiology Biotechnology, 51, 730–750.

    Article  CAS  Google Scholar 

  • Omoike, A., & Chorover, J. (2006). Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochimica et Cosmochimica Acta, 70, 827–838.

    Article  CAS  Google Scholar 

  • Pezza, R. J., Villareal, M. A., Montich, G. G., & Argaraña, C. E. (2002). Vanadate inhibits the ATPase activity and DNA binding capability of bacterial MutS A structural model for the vanadate–MutS interaction at the Walker A motif. Nucleic acids research, 30(21), 4700–4708.

    Article  CAS  Google Scholar 

  • Philen, O. D., Weed, S. B., & Weber, J. B. (1971). Surface charge characterization of layer silicates by competitive adsorptions of two organic divalent cations. Clays and Clay Minerals, 19, 295–302.

    Article  CAS  Google Scholar 

  • Redman, J., Walker, S., & Elimelech, M. (2004). Bacterial adhesion and transport in porous media: Role of the secondary energy minimum. Environmental Science and Technology, 38, 1777–1785.

    Article  CAS  Google Scholar 

  • Schoonen, M., Cohn, C., Roemer, E., Laffers, R., Simon, S., & O’riordan, T. (2006). Mineral-induced formation of reactive oxygen species. Reviews in Mineralogy and Geochemistry, 64, 179–221.

    Article  CAS  Google Scholar 

  • Shellenberger, K., & Logan, B. (2002). Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environmental Science and Technology, 36, 184–189.

    Article  CAS  Google Scholar 

  • Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructural Research, 26, 31–43.

    Article  CAS  Google Scholar 

  • Środoń, J., & McCarthy, D. K. (2008). Surface area and layer charge of smectite from CEC and EGME/H2O-retention measurements. Clays and Clay Minerals, 56(2), 155–174.

    Article  Google Scholar 

  • Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology Medicine, 18, 321–336.

    Article  CAS  Google Scholar 

  • Tiller, K., & Smith, L. H. (1990). Limitations of EGME retention to estimate the surface area of soils. Australian Journal of Soil Research, 28(1), 1–26.

    Article  Google Scholar 

  • Tovar-Sanchez, A., Sanudo-Wilhelmy, S. A., Garcia-Vargas, M., Weaver, R. S., Popels, L. C., & Hutchins, D. A. (2003). A trace metal clean reagent to remove surface-bound iron from marine phytoplankton. Marine Chemistry, 82, 91–99.

    Article  CAS  Google Scholar 

  • Turner, R. J., Weiner, J. H., & Taylor, D. E. (1998). Selenium metabolism in Escherichia coli. BioMetals, 11(3), 223–227.

    Article  CAS  Google Scholar 

  • Van Olphen, H., & Fripiat, J. J. (1979). Data handbook for clay minerals and other non-metallic minerals. New York: Pergamon Press.

    Google Scholar 

  • Wackett, L. P., Dodge, A. G., & Ellis, L. B. M. (2004). Microbial genomics and the periodic table. Applied and Environmental Microbiology, 70(2), 647–655.

    Article  CAS  Google Scholar 

  • Walker, S., Flemming, C., Ferris, F., Beveridge, T., & Bailey, G. (1989). Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Applied and Environmental Microbiology, 55(11), 2976–2984.

    CAS  Google Scholar 

  • Williams, R. J. (1999). What is wrong with Aluminum? Journal of Inorganic Biochemistry, 76, 81–88.

    Article  CAS  Google Scholar 

  • Williams, L. B., & Haydel, S. E. (2010). Evaluation of the medicinal use of clay minerals as antibacterial agents. International Geology Reviews, 2010(52), 745–770.

    Article  Google Scholar 

  • Williams, L. B., Haydel, S. E., & Ferrell, R. E. (2009). Bentonite, bandaids, and borborygmi. Elements: An international magazine of mineralogy, geochemistry and petrology, 5(2), 99–104.

    Article  CAS  Google Scholar 

  • Williams, L. B., Haydel, S. E., Giese, R. F., & Eberl, D. D. (2008). Chemical and mineralogical characteristics of French green clays used for healing. Clays and Clay Minerals, 56(4), 437–452.

    Article  CAS  Google Scholar 

  • Williams, L. B., Holland, M., Eberl, D. D., & de Courrsou, L. B. (2004). Killer Clays! Natural antibacterial clay minerals. Mineralogical Society of London Bulletin, 139, 3–8.

    Google Scholar 

  • Williams, L., Metge, D. W., Eberl, D. D., Harvey, R. W., Turner, A. G., Prapaipong, P., & Poret-Peterson, A. T. (2011). What makes a natural clay antibacterial? Environmental Science and Technology, 45, 3768–3773.

    Article  CAS  Google Scholar 

  • Wolery, T. J. (1992). EQ3/6, A software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0). Nevada: Lawrence Livermore National Laboratory.

    Book  Google Scholar 

  • Xu, J., Campbell, J. M., Zhang, N., Hickey, W., & Sahai, N. (2012). Did mineral surface chemistry and toxicity contribute to evolution of microbial extracellular polymeric substances? Astrobiology, 12(8), 785–798.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation Grant EAR 112393 to LW, the Administrative Department of Science, Technology and Innovation in Colombia, Colciencias as well as the Clay Minerals Society and the Geological Society of America student Grants to SCL. We thank Professor Rajeev Misra and Amisha Poret-Peterson for their assistance and guidance in microbiology. Thanks to David Lowry (TEM), Keith Morrison (XRF), Panjai Prapaipong, Stephen Romaniello, Gwyneth Williams (ICP-MS), and John Mardinly (EDS) for their technical support at Arizona State University, and Sharon Walker at UC Riverside for discussions of DLVO data. We gratefully acknowledge the use of facilities within the LeRoy Eyring center for Solid State Science at Arizona State University. The authors sincerely thank the late Vicente Makuritofe (Uitoto cultural expert) and his family for their collaboration and contribution to this work.

Ethical standard

The results of this study were communicated and explained to the Uitoto traditional authority from which the authors received the sample with permission to study it. No monetary benefit has been generated, and the clay is Uitoto’s property. This study shows that certain cultural-based practices have a scientific basis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Carolina Londono.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10653_2015_9723_MOESM1_ESM.docx

Online Resources 1. Composition of the Luria Broth growth medium (5 g/L) without clay (LB) and incubated with AMZ clay for 24 h to produce an LB leachate. The concentrations reported in Table 5 are the result of LB–LB leachate. SD standard deviation of duplicates. (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londono, S.C., Williams, L.B. Unraveling the antibacterial mode of action of a clay from the Colombian Amazon. Environ Geochem Health 38, 363–379 (2016). https://doi.org/10.1007/s10653-015-9723-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9723-y

Keywords

Navigation