Skip to main content
Log in

Embedded large eddy simulation approach for pollutant dispersion around a model building in atmospheric boundary layer

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In the present article, the potential of embedded large eddy simulation (ELES) approach to reliably predict pollutant dispersion around a model building in atmospheric boundary layer is assessed. The performance of ELES in comparison with large eddy simulation (LES) is evaluated in several ways. These include a number of qualitative and quantitative comparisons of time-averaged and instantaneous results with wind tunnel measurements supplemented by statistical data analyses using scatter plots and standard evaluation metrics. Results obtained by both LES and ELES approaches show very good agreement with the experiment. However, addition of turbulence to mean flow at Reynolds averaged Navier–Stokes (RANS)–LES interface in ELES approach not only increases the turbulence intensity, it also results in larger values of turbulent kinetic energy (TKE) as well as a shorter reattachment length in the wake region. Accordingly, higher levels of TKE predicted by ELES increase the local intensity of concentration leading to shorter plume shapes as compared with LES. In general, ELES shows better agreement with experiment on the surfaces of model building and also in the downstream wake region. In terms of computational costs, the CPU time required to obtain statistical values in ELES is about 49 % lower than that of LES and the number of iterations per time step is also reduced by 55 % as compared with LES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(\langle \rangle\) :

Time-averaged value

c :

Concentration

C s :

Smagorinsky constant

CFL :

Courant–Friedrichs–Lewy number

D :

Molecular diffusivity

D SGS :

SGS turbulent diffusivity

D t :

Turbulent diffusivity

FB :

Fractional bias

\(\hat{g}\) :

Unit vector aligned with streamwise mean velocity gradient

H b :

Model building height

Ic :

Local intensity

Ic abs :

Absolute intensity

I ε :

Dissipation length scale

I μ :

Viscous length scale

\(J_{i}^{SGS}\) :

SGS turbulent scalar flux

K:

Dimensionless concentration

N :

Number of vortex points

NMSE :

Normalized mean square error

p :

Pressure

q :

Hit rate

Q e :

Effluent release rate

\(q_{j}^{RANS}\) :

Turbulent scalar flux

\(q_{j}^{SGS}\) :

Sub-grid scale scalar flux

\(Q_{x}^{C}\) :

Streamwise convective scalar flux

\(Q_{x}^{T}\) :

Streamwise total turbulent scalar flux

R :

Pearson correlation coefficient

\(RE \equiv (\langle K_{Num} \rangle - \langle K_{Exp} \rangle )/\langle K_{Exp} \rangle\) :

Relative error of K

RNMSE :

Root normalized mean square error

S :

Area of interface

S ij :

Rate of strain tensor

Sc SGS :

Sub-grid scale Schmidt number

Sc t :

Turbulent Schmidt number

TKE :

Turbulent kinetic energy

U b :

Velocity at model building height

u i :

Velocity in ith direction

U :

Free stream velocity

W :

Absolute error threshold

x :

Streamwise direction

\(\hat{x}\) :

Unit vector in the streamwise direction

y :

Vertical direction

y + :

Dimensionless wall distance

z :

Lateral direction

Γ:

Circulation

Δ:

Grid filter width

Δt:

Time step

δ :

Boundary layer thickness

δ ij :

Kronecker delta

ε :

Turbulent dissipation rate

η :

Spatial distribution of vortex

κ :

Von-Karman constant

ν :

Molecular kinematic viscosity

ν t :

Eddy viscosity (turbulent viscosity)

ν SGS :

Sub-grid scale turbulent viscosity

ρ :

Density

σ i :

Local vortex size

τ :

Characteristic time scale

\(\tau_{ij}^{RANS}\) :

Turbulent stress tensor

\(\tau_{ij}^{SGS}\) :

Sub-grid scale stress tensor

ω :

Vorticity

b:

Building

e:

Effluent

ELES:

Embedded large eddy simulation

Exp:

Experimental

LES:

Large eddy simulation

Num:

Numerical

SGS:

Sub-grid scale

t:

Turbulent

x:

Streamwise direction

∞:

Free stream

C:

Convective

T:

Turbulent

–:

Filtered

References

  1. Blocken B, Tominaga Y, Stathopoulos T (2013) CFD simulation of micro-scale pollutant dispersion in the built environment. Build Environ 64:225–230. doi:10.1016/j.buildenv.2013.01.001

    Article  Google Scholar 

  2. Blocken B (2014) 50 Years of computational wind engineering: past, present and future. J Wind Eng Ind Aerodyn 129:69–102. doi:10.1016/j.jweia.2014.03.008

    Article  Google Scholar 

  3. Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Flesca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37(2):155–182. doi:10.1016/S1352-2310(02)00857-9

    Article  Google Scholar 

  4. Mochida A, Lun IYF (2008) Prediction of wind environment and thermal comfort at pedestrian level in urban area. J Wind Eng Ind Aerodyn 96(10–11):1498–1527. doi:10.1016/j.jweia.2008.02.033

    Article  Google Scholar 

  5. Saneinejad S, Moonen P, Carmeliet J (2014) Coupled CFD, radiation and porous media model for evaluating the micro-climate in an urban environment. J Wind Eng Ind Aerodyn 128:1–11. doi:10.1016/j.jweia.2014.02.005

    Article  Google Scholar 

  6. Gromke C, Blocken B, Janssen W, Merema B, van Hooff T, Timmermans H (2015) CFD analysis of transpirational cooling by vegetation: case study for specific meteorological conditions during a heat wave in Arnhem, Netherlands. Build Environ 83:11–26. doi:10.1016/j.buildenv.2014.04.022

    Article  Google Scholar 

  7. Bazdidi-Tehrani F, Mohammadi-Ahmar A, Kiamansouri M, Jadidi M (2015) Investigation of various non-linear eddy viscosity turbulence models for simulating flow and pollutant dispersion on and around a cubical model building. Build Simul 8(2):149–166. doi:10.1007/s12273-014-0199-y

    Article  Google Scholar 

  8. Blocken B (2015) Computational fluid dynamics for urban physics: importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Build Environ 91:219–245

    Article  Google Scholar 

  9. Tominaga Y, Stathopoulos T (2010) Numerical simulation of dispersion around an isolated cubic building: model evaluation of RANS and LES. Build Environ 45(10):2231–2239. doi:10.1016/j.buildenv.2010.04.004

    Article  Google Scholar 

  10. Gousseau P, Blocken B, van Heijst GJF (2011) CFD simulation of pollutant dispersion around isolated buildings: on the role of convective and turbulent mass fluxes in the prediction accuracy. J Hazard Mater 194:422–434. doi:10.1016/j.jhazmat.2011.08.008

    Article  Google Scholar 

  11. Bazdidi-Tehrani F, Jadidi M (2014) Large eddy simulation of dispersion around an isolated cubic building: evaluation of localized dynamic kSGS equation sub-grid scale model. Environ Fluid Mech 14(3):565–589. doi:10.1007/s10652-013-9316-1

    Article  Google Scholar 

  12. Bazdidi-Tehrani F, Ghafouri A, Jadidi M (2013) Grid resolution assessment in large eddy simulation of dispersion around an isolated cubic building. J Wind Eng Ind Aerodyn 121:1–15. doi:10.1016/j.jweia.2013.07.003

    Article  Google Scholar 

  13. Salim SM, Cheah SC, Chan A (2011) Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: comparison between RANS and LES. Build Environ 46(9):1735–1746. doi:10.1016/j.buildenv.2011.01.032

    Article  Google Scholar 

  14. Tominaga Y, Stathopoulos T (2012) CFD modeling of pollution dispersion in building array: evaluation of turbulent scalar flux modeling in RANS model using LES results. J Wind Eng Ind Aerodyn 104–106:484–491. doi:10.1016/j.jweia.2012.02.004

    Article  Google Scholar 

  15. Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T (2008) AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn 96(10):1749–1761

    Article  Google Scholar 

  16. Davidson L (2015) Fluid mechanics, turbulent flow and turbulence modeling. Division of Fluid Dynamics, Department of Applied Mechanics, Chalmers University of Technology, Göteborg

    Google Scholar 

  17. Cheng Y, Lien FS, Yee E, Sinclair R (2003) A comparison of large eddy simulations with a standard k–ε Reynolds-averaged Navier–Stokes model for the prediction of a fully developed turbulent flow over a matrix of cubes. J Wind Eng Ind Aerodyn 91(11):1301–1328. doi:10.1016/j.jweia.2003.08.001

    Article  Google Scholar 

  18. Davidson L (2014) The PANS k–ε model in a zonal hybrid RANS–LES formulation. Int J Heat Fluid Flow 46:112–126

    Article  Google Scholar 

  19. Fröhlich J, von Terzi D (2008) Hybrid LES/RANS methods for the simulation of turbulent flows. Prog Aerosp Sci 44(5):349–377. doi:10.1016/j.paerosci.2008.05.001

    Article  Google Scholar 

  20. Menter F, Schütze J, Gritskevich M (2012) Global vs. zonal approaches in hybrid RANS–LES turbulence modelling. In: Fu S, Haase W, Peng S-H, Schwamborn D (eds) Progress in hybrid RANS–LES modelling. Notes on numerical fluid mechanics and multidisciplinary design, vol 117. Springer, Berlin, pp 15–28. doi:10.1007/978-3-642-31818-4_2

    Google Scholar 

  21. Sagaut P, Deck S, Terracol M (2013) Multiscale and multiresolution approaches in turbulence—LES, DES and hybrid RANS/LES methods: applications and guidelines, 2nd edn. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  22. Von Terzi D, Fröhlich J (2010) Segregated coupling of large-eddy simulations with downstream Reynolds-averaged Navier–Stokes calculations. Comput Fluids 39(8):1314–1331

    Article  Google Scholar 

  23. Chaouat B, Schiestel R (2013) Hybrid RANS/LES simulations of the turbulent flow over periodic hills at high Reynolds number using the PITM method. Comput Fluids 84:279–300. doi:10.1016/j.compfluid.2013.06.012

    Article  Google Scholar 

  24. Kakosimos KE, Assael MJ (2013) Application of detached eddy simulation to neighbourhood scale gases atmospheric dispersion modelling. J Hazard Mater 261:653–668. doi:10.1016/j.jhazmat.2013.08.018

    Article  Google Scholar 

  25. Lateb M, Masson C, Stathopoulos T, Bédard C (2014) Simulation of near-field dispersion of pollutants using detached-eddy simulation. Comput Fluids 100:308–320. doi:10.1016/j.compfluid.2014.05.024

    Article  Google Scholar 

  26. Labourasse E, Sagaut P (2002) Reconstruction of turbulent fluctuations using a hybrid RANS/LES approach. J Comput Phys 182(1):301–336

    Article  Google Scholar 

  27. Quéméré P, Sagaut P, Couailler V (2001) A new multi-domain/multi-resolution method for large-eddy simulation. Int J Numer Methods Fluids 36(4):391–416

    Article  Google Scholar 

  28. Quéméré P, Sagaut P (2002) Zonal multi-domain RANS/LES simulations of turbulent flows. Int J Numer Methods Fluids 40(7):903–925. doi:10.1002/fld.381

    Article  Google Scholar 

  29. Spalart P, Jou W, Strelets M, Allmaras S (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. Adv DNS/LES 1:4–8

    Google Scholar 

  30. Spalart PR, Deck S, Shur M, Squires K, Strelets MK, Travin A (2006) A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor Comput Fluid Dyn 20(3):181–195

    Article  Google Scholar 

  31. Shur ML, Spalart PR, Strelets MK, Travin AK (2008) A hybrid RANS–LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 29(6):1638–1649

    Article  Google Scholar 

  32. Menter F (2012) Best practice: scale-resolving simulations in ANSYS CFD. ANSYS Germany GmbH, Germany

  33. Mathey F, Cokljat D, Rodi W, Mulas M (2005) Zonal multi-domain RANS/LES simulation of airflow over the Ahmed body. Eng Turbul Model Exp 6:647–656

    Article  Google Scholar 

  34. Mathey F, Cokljat D, Bertoglio JP, Sergent E (2006) Assessment of the vortex method for large eddy simulation inlet conditions. Prog Comput Fluid Dyn Int J 6(1):58–67

    Article  Google Scholar 

  35. Liu Y, Tucker PG, Iacono GL (2006) Comparison of zonal RANS and LES for a non-isothermal ribbed channel flow. Int J Heat Fluid Flow 27(3):391–401

    Article  Google Scholar 

  36. Gritskevich M, Garbaruk A, Frank T, Menter F (2014) Investigation of the thermal mixing in a T-junction flow with different SRS approaches. Nucl Eng Des 279:83–90

    Article  Google Scholar 

  37. Haupt SE, Zajaczkowski FJ, Peltier LJ (2011) Detached eddy simulation of atmospheric flow about a surface mounted cube at high Reynolds number. J Fluids Eng 133(3):031002

    Article  Google Scholar 

  38. Li W-W, Meroney RN (1983) Gas dispersion near a cubical model building. Part I. Mean concentration measurements. J Wind Eng Ind Aerodyn 12(1):15–33

    Article  Google Scholar 

  39. Tominaga Y, Stathopoulos T (2009) Numerical simulation of dispersion around an isolated cubic building: comparison of various types of <i>k</i>–<i>ɛ</i> models. Atmos Environ 43(20):3200–3210

    Article  Google Scholar 

  40. Gousseau P, Blocken B, van Heijst G (2012) Large-eddy simulation of pollutant dispersion around a cubical building: analysis of the turbulent mass transport mechanism by unsteady concentration and velocity statistics. Environ Pollut 167:47–57

    Article  Google Scholar 

  41. Jadidi M, Bazdidi-Tehrani F, Kiamansouri M (2016) Dynamic sub-grid scale turbulent Schmidt number approach in large eddy simulation of dispersion around an isolated cubical building. Build Simul 9(2):183–200. doi:10.1007/s12273-015-0257-0

    Google Scholar 

  42. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  43. Hinze JO (1975) Turbulence. McGraw-Hill, New York

    Google Scholar 

  44. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  45. Tominaga Y, Stathopoulos T (2011) CFD modeling of pollution dispersion in a street canyon: comparison between LES and RANS. J Wind Eng Ind Aerodyn 99(4):340–348

    Article  Google Scholar 

  46. Rodi W (1991) Experience with two-layer models combining the k–ε model with a one-equation model near the wall. AIAA J Paper No. 91-0216

  47. Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new k–ε eddy-viscosity model for high Reynolds number turbulent flows—model development and validation. Comput Fluids 24:227–238

    Article  Google Scholar 

  48. Wolfstein M (1969) The velocity and temperature distribution of one-dimensional flow with turbulence augmentation and pressure gradient. Int J Heat Mass Transf 12:301–318

    Article  Google Scholar 

  49. Gromke C, Buccolieri R, Di Sabatino S, Ruck B (2008) Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations—evaluation of CFD data with experimental data. Atmos Environ 42(37):8640–8650. doi:10.1016/j.atmosenv.2008.08.019

    Article  Google Scholar 

  50. Sergent E (2002) Vers une methodologie de couplage entre la Simulation des Grandes Echelles et les modeles statistiques. Ecole centrale de Lyon, Ecully

    Google Scholar 

  51. Penttinen O, Nilsson H (2015) A fully synthetic turbulent boundary condition with a homogeneous vortex distribution. Comput Phys Commun 190:23–32

    Article  Google Scholar 

  52. Franke J, Hellsten A, Schlunzen KH, Carissimo B (2011) The COST 732 best practice guideline for CFD simulation of flows in the urban environment: a summary. Int J Environ Pollut 44(1):419–427

    Article  Google Scholar 

  53. Gousseau P, Blocken B, Stathopoulos T, van Heijst G (2015) Near-field pollutant dispersion in an actual urban area: analysis of the mass transport mechanism by high-resolution large eddy simulations. Comput Fluids 114:151–162

    Article  Google Scholar 

  54. Blocken B, Stathopoulos T, Carmeliet J (2007) CFD simulation of the atmospheric boundary layer: wall function problems. Atmos Environ 41(2):238–252

    Article  Google Scholar 

  55. Werner H, Wengle H (1993) Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In: Durst F, Friedrich R, Launder B, Schmidt F, Schumann U, Whitelaw J (eds) Turbulent Shear Flows 8. Springer, Munich, pp 155–168

  56. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite method. Pearson Education Limited, Harlow

    Google Scholar 

  57. OpenFOAM (2014) The open source CFD toolbox, programmer’s guide, version 2.3.1. OpenCFD Ltd., Reading

    Google Scholar 

  58. Davidson L (2011) How to estimate the resolution of an LES of recirculating flow. In: Salvetti MV, Geurts B, Meyers J, Sagaut P (eds) Quality and reliability of large-eddy simulations II. ERCOFTAC series, vol 16. Springer, Dordrecht, pp 269–286. doi:10.1007/978-94-007-0231-8_25

  59. Jasak H, Weller H, Gosman A (1999) High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int J Numer Methods Fluids 31(2):431–449

    Article  Google Scholar 

  60. Hanna S, Chang J (2012) Acceptance criteria for urban dispersion model evaluation. Meteorol Atmos Phys 116(3–4):133–146

    Article  Google Scholar 

  61. Moonen P, Gromke C, Dorer V (2013) Performance assessment of large eddy simulation (LES) for modeling dispersion in an urban street canyon with tree planting. Atmos Environ 75:66–76

    Article  Google Scholar 

  62. Rossi R, Iaccarino G (2013) Numerical analysis and modeling of plume meandering in passive scalar dispersion downstream of a wall-mounted cube. Int J Heat Fluid Flow 43:137–148

    Article  Google Scholar 

  63. Gousseau P, Blocken B, van Heijst GJF (2013) Quality assessment of large-eddy simulation of wind flow around a high-rise building: validation and solution verification. Comput Fluids 79:120–133. doi:10.1016/j.compfluid.2013.03.006

    Article  Google Scholar 

  64. Li W-W, Meroney RN (1983) Gas dispersion near a cubical model building. Part II. Concentration fluctuation measurements. J Wind Eng Ind Aerodyn 12(1):35–47

    Article  Google Scholar 

  65. Tominaga Y, Mochida A, Murakami S, Sawaki S (2008) Comparison of various revised k–ε models and LES applied to flow around a high-rise building model with 1:1:2 shape placed within the surface boundary layer. J Wind Eng Ind Aerodyn 96(4):389–411

    Article  Google Scholar 

  66. Jiang G, Yoshie R, Shirasawa T, Jin X (2012) Inflow turbulence generation for large eddy simulation in non-isothermal boundary layers. J Wind Eng Ind Aerodyn 104–106:369–378. doi:10.1016/j.jweia.2012.02.030

    Article  Google Scholar 

  67. Huang S, Li Q, Wu J (2010) A general inflow turbulence generator for large eddy simulation. J Wind Eng Ind Aerodyn 98(10):600–617

    Article  Google Scholar 

  68. Blocken B, Stathopoulos T, Saathoff P, Wang X (2008) Numerical evaluation of pollutant dispersion in the built environment: comparisons between models and experiments. J Wind Eng Ind Aerodyn 96(10):1817–1831

    Article  Google Scholar 

  69. Murakami S (1993) Comparison of various turbulence models applied to a bluff body. J Wind Eng Ind Aerodyn 46:21–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Bazdidi-Tehrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadidi, M., Bazdidi-Tehrani, F. & Kiamansouri, M. Embedded large eddy simulation approach for pollutant dispersion around a model building in atmospheric boundary layer. Environ Fluid Mech 16, 575–601 (2016). https://doi.org/10.1007/s10652-016-9444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-016-9444-5

Keywords

Navigation