Skip to main content
Log in

How Visual Displays Affect Cognitive Processing

  • Review Article
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

We regularly consult and construct visual displays that are intended to communicate important information. The power of these displays and the instructional messages we attempt to comprehend when using them emerge from the information included in the display and by their spatial arrangement. In this article, we identify common types of visual displays and the kinds of inferences that each type of display is designed to promote. In particular, we outline different types of semantic and pictorial displays. Then, we describe four main ways in which visual displays can affect cognitive processing including selection, organization, integration, and processing efficiency and how semantic and pictorial displays support these types of processing. We conclude with seven recommendations for designing visual displays and possible directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ainsworth, S. (2006). DeFT: a conceptual framework for considering learning with multiple representations. Learning and Instruction, 16, 183–198.

    Article  Google Scholar 

  • Ainsworth, S. E., & Loizou, A. T. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27(4), 669–681.

    Article  Google Scholar 

  • Ayres, P., & Sweller, J. (2005). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 135–146). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Baddeley, A. D. (2007). Working memory, thought and action. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe & A. Shimamura (Eds.), Metacognition: knowing about knowing (pp. 185–205). Cambridge, MA: MIT Press.

    Google Scholar 

  • Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn. Washington, DC: National Academy Press.

    Google Scholar 

  • Butcher, K. R. (2006). Learning from text with diagrams: promoting mental model development and inference generation. Journal of Educational Psychology, 98(1), 182–197.

    Article  Google Scholar 

  • Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380–400. doi:10.1037/a0031084.

    Article  Google Scholar 

  • Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14, 5–26.

    Article  Google Scholar 

  • Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219–243. doi:10.1080/00461520.2014.965823.

    Article  Google Scholar 

  • Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3, 149–210.

    Article  Google Scholar 

  • Cromley, J. G., Snyder-Hogan, L. E., & Luciw-Dubas, U. A. (2010). Cognitive activities in complex science text and diagrams. Contemporary Educational Psychology, 35, 59–74. doi:10.1016/j.cedpsych.2009.10.002.

    Article  Google Scholar 

  • de Koning, B. B., Tabbers, H., Rikers, R. M. J. P., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: guidelines for research and design. Educational Psychology Review, 21(2), 113–140.

    Article  Google Scholar 

  • de Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2010). Attention guidance in learning from a complex animation: seeing is understanding? Learning and Instruction, 20(2), 111–122.

    Article  Google Scholar 

  • Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning and comprehension by using effective learning techniques: promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14, 4–58.

    Article  Google Scholar 

  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: verbal reports as data. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity: eight learning strategies that promote understanding. New York: Cambridge University Press.

    Book  Google Scholar 

  • Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: a systematic review. Educational Psychology Review, 26, 9–25. doi: 10.1007/s10648-014-9249-3

  • Ginns, P. (2006). Integrating information: a meta-analysis of the spatial contiguity and temporal contiguity effects. Learning and Instruction, 16(6), 511–525.

    Article  Google Scholar 

  • Graesser, A. C., Singer, M., & Trabasso, T. (1994). Constructing inferences during narrative text comprehension. Psychological Review, 101, 371–395.

    Article  Google Scholar 

  • Guitèrrez, K. D., & Rogoff, B. (2003). Cultural ways of learning: individual traits or repertoires of practice. Educational Researcher, 5, 19–25.

    Article  Google Scholar 

  • Gutierrez, A. P., Schraw, G., & Stefik, A. (2015). Design principles for visual displays: past, present, and future. In M. T. McCrudden, G. Schraw, & C. Buckendahl (Eds.), Use of visual displays in research and testing: Coding, interpreting, and reporting data (pp. 17–46). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Hegarty, M., Canham, M., & Fabrikant, S. (2010). Thinking about the weather: how display salience and knowledge affect performance in a graphic inference task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 37–53. doi:10.1037/a0017683.

    Google Scholar 

  • Hinze, S. R., Rapp, D. N., Williamson, V. M., Shultz, M. J., Deslongchamps, G., & Williamson, K. C. (2013). Beyond the ball-and-stick: students’ processing of novel STEM visualizations. Learning and Instruction, 26, 12–21.

    Article  Google Scholar 

  • Höffler, T. N. (2010). Spatial ability: its influence on learning with visualizations—a meta-analytic review. Educational Psychology Review, 22, 245–269. doi:10.1007/s10648-010-9126-7.

    Article  Google Scholar 

  • Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: a meta-analysis. Learning and Instruction, 17, 722–738.

    Article  Google Scholar 

  • Hollan, J. D., Hutchins, E. L., & Weitzman, L. (1984). Steamer: an interactive inspectable simulation-based training system. AI Magazine, 5(2), 15–27.

  • Jairam, D., & Kiewra, K. A. (2010). Helping students soar to success on computers: an investigation of the SOAR study method for computer-based learning. Journal of Educational Psychology, 102(3), 601–614.

    Article  Google Scholar 

  • Jonassen, D. H., Beissner, K., & Yacci, M. A. (1993). Structural knowledge. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: individual differences in working memory. Psychological Review, 99, 122–149.

    Article  Google Scholar 

  • Kauffman, D. F., & Kiewra, K. A. (2010). What makes a matrix so effective? An empirical test of the relative benefits of signaling, extraction, and localization. Instructional Science, 38, 679–705.

    Article  Google Scholar 

  • Kiewra, K. A. (2012). IDEA Paper 51: using graphic organizers to improve teaching and learning. Manhattan, KS: The IDEA Center.

    Google Scholar 

  • Kiewra, K. A., Kauffman, D. F., Robinson, D., DuBois, N., & Staley, R. K. (1999). Supplementing floundering text with adjunct displays. Journal of Instructional Science, 27, 373–401.

    Google Scholar 

  • Kosslyn, S. M. (1985). Graphics and human information processing: a review of five books. Journal of the American Statistical Association, 80, 499–513.

    Article  Google Scholar 

  • Kozhevnikov, M., Evans, C., & Kosslyn, S. M. (2014). Cognitive styles as environmentally sensitive individual differences in cognition: a modern synthesis and applications in education, business, and management. Psychological Science in the Public Interest, 15(1), 3–33.

    Article  Google Scholar 

  • Kriz, S., & Hegarty, M. (2007). Top-down and bottom-up influences on learning from animations. International Journal of Human-Computer Studies, 65, 911–930. doi:10.1016/j.ijhcs.2007.06.005.

    Article  Google Scholar 

  • Lane, D. M. (2015). Guidelines for making graphs easy to perceive, easy to understand, and information rich. In M. T. McCrudden, G. Schraw, & C. Buckendahl (Eds.), Use of visual displays in research and testing: Coding, interpreting, and reporting data (pp. 47–81). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–100.

    Article  Google Scholar 

  • Lowe, R. K. (2003). Animation and learning: selective processing of information in dynamic graphics. Learning and Instruction, 13(2), 157–176.

    Article  Google Scholar 

  • Lowe, R. K., & Boucheix, J. M. (2008). Learning from animated diagrams: how are mental models built. In G. Stapleton, J. Howse, & J. Lee (Eds.), Theory and applications of diagrams (pp. 266–281). Berlin: Springer.

    Google Scholar 

  • Marley, S. C., & Carbonneau, K. J. (2014). Future directions for theory and research with instructional manipulatives: commentary on the special issue papers. Educational Psychology Review, 26(1), 91–100. doi:10.1007/s10648-014-9259-1.

    Article  Google Scholar 

  • Marr, D. (1982). Vision. San Francisco, CA: Freeman.

    Google Scholar 

  • Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60, 95–109.

    Article  Google Scholar 

  • Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Mayer, R. E. (2013). Fostering learning with visual displays. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays (pp. 47–73). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Mayer, R. E., & Johnson, C. (2008). Revising the redundancy principle in multimedia learning. Journal of Educational Psychology, 100, 380–386.

    Article  Google Scholar 

  • McCrudden, M. T., Schraw, G., & Lehman, S. (2009). The use of adjunct displays to facilitate comprehension of causal relationships in expository text. Instructional Science, 37(1), 65–86. doi:10.1007/s11251-007-9036-3.

    Article  Google Scholar 

  • McCrudden, M. T., Magliano, J., & Schraw, G. (2011). The effects of diagrams on online reading processes and memory. Discourse Processes, 48(2), 69–92. doi:10.1080/01638531003694561.

    Article  Google Scholar 

  • McCrudden, M. T., Hushman, C., & Marley, S. (2014). Exploring the boundary conditions of the redundancy principle. The Journal of Experimental Education, 82(4), 537–554. doi:10.1080/00220973.2013.813368.

    Article  Google Scholar 

  • McElhaney, K., Chang, H., Chiu, J. L., & Linn, M. C. (2015). Evidence for effective uses of dynamic visualisations in science curriculum materials. Studies in Science Education. doi:10.1080/03057267.2014.984506.

    Google Scholar 

  • Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: the role of modality and contiguity. Journal of Educational Psychology, 91, 358–368.

    Article  Google Scholar 

  • Nesbit, J. C., & Adelsope, O. O. (2006). Learning with concept and knowledge maps: a metaanalysis. Review of Educational Research, 76, 413–448. doi:10.3102/00346543076003413.

    Article  Google Scholar 

  • Newcombe, N., & Shipley, T. F. (2012). Thinking about spatial thinking: new typology, new assessments. In J. S. Gero (Ed.), Studying visual and spatial reasoning for design creativity. Berlin: Springer.

    Google Scholar 

  • Novick, L. R., & Hurley, S. M. (2001). To matrix, network, or hierarchy, that is the question. Cognitive Psychology, 42, 158–216.

    Article  Google Scholar 

  • O’Brien, E. J., Rizzella, M. L., Albrecht, J. E., & Halleran, J. G. (1998). Updating a situation model: a memory-based text processing view. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1200–1210.

    Google Scholar 

  • O’Brien, E. J., Cook, A. E., & Guéraud, S. (2010). Accessibility of outdated information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 979–991.

    Google Scholar 

  • O’Donnell, A., Dansereau, D., & Hall, R. H. (2002). Knowledge maps as scaffolds for cognitive processing. Educational Psychology Review, 14, 71–86.

    Article  Google Scholar 

  • Ozcelik, E., Arslan-Ari, I., & Cagiltay, K. (2010). Why does signaling enhance multimedia learning? Evidence from eye movements. Computers in Human Behavior, 26, 110e117. doi:10.1016/j.chb.2009.09.001.

    Article  Google Scholar 

  • Park, B., Flowerday, T., & Brünken, R. (2015). Cognitive and affective effects of seductive details in multimedia learning. Computers in Human Behavior, 44, 267–278.

    Article  Google Scholar 

  • Pastor, D. A., & Finney, S. J.  (2013).  Using visual displays to enhance understanding of quantitative research.  In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays (pp. 387–415). Charlotte, NC: Information Age Publishing.

  • Plass, J. L., Homer, B. D., & Hayward, E. (2009). Design factors for educationally effective animations and simulations. Journal of Computing in Higher Education, 21(1), 31–61.

    Article  Google Scholar 

  • Ponce, H. R., & Mayer, R. E. (2014). Qualitatively different cognitive processing during online reading primed by different study activities. Computers in Human Behavior, 30, 121–130.

    Article  Google Scholar 

  • Rapp, D. N., & Taylor, H. A. (2004). Interactive dimensions in the construction of mental representations for text. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 988–1001.

    Google Scholar 

  • Robinson, D. H. (1998). Graphic organizers as aids to text learning. Reading Research and Instruction, 37, 85–105.

    Article  Google Scholar 

  • Robinson, D. H., & Kiewra, K. A. (1995). Visual argument: graphic organizers are superior to outlines in improving learning from text. Journal of Educational Psychology, 87, 455–467.

    Article  Google Scholar 

  • Robinson, D. H., & Schraw, G. (1994). Computational efficiency through visual argument: do graphic organizers communicate relations in text too effectively? Contemporary Educational Psychology, 19, 399–415.

    Article  Google Scholar 

  • Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.

    Article  Google Scholar 

  • Sanchez, C. A., & Wiley, J. (2006). An examination of the seductive details effect in terms of working memory capacity. Memory & Cognition, 34, 344–355.

    Article  Google Scholar 

  • Sauter, M., Uttal, D. H., Rapp, D. N., Downing, M., & Jona, K. (2013). Getting real: the authenticity of remote labs and simulations for science learning. Distance Education, 34(1), 37–47.

    Article  Google Scholar 

  • Schnotz, W. (2002). Commentary—towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14(1), 101–120.

    Article  Google Scholar 

  • Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: implications for instruction. Educational Psychology Review, 14, 47–69.

    Article  Google Scholar 

  • Stroet, K., Opdenakker, M., & Minnaert, A. (2015). What motivates early adolescents for school? A longitudinal analysis of associations between observed teaching and motivation. Contemporary Educational Psychology, 42, 129–140.

    Article  Google Scholar 

  • Sweller, J., van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

    Article  Google Scholar 

  • Tversky, B., Zacks, J., Lee, P., & Heiser, J. (2000). Lines, blobs, crosses, and arrows: diagrammatic communication with schematic figures. In M. Anderson, P. Cheng, & V. Haarslev (Eds.), Theory and application of diagrams (pp. 221–230). Berlin: Springer.

    Chapter  Google Scholar 

  • Van Meter, P. N., Waters, J. R., & Cameron, C. (2015, April). The effects of self-explanation prompts and diagram comprehension ability on task performance in multimedia learning. Poster presented at the annual conference of the American Educational Research Association, Chicago, Illinois.

  • Vekiri, I. (2002). What is the value of graphical displays in learning? Educational Psychology Review, 14, 261–312.

    Article  Google Scholar 

  • Winn, W. (1991). Learning from maps and diagrams. Educational Psychology Review, 3, 211–247.

    Article  Google Scholar 

  • Wylie, R., & Chi, M. T. H. (2014). The self-explanation principle in multimedia learning. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (2nd ed., pp. 413–432). New York: Cambridge University Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew T. McCrudden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCrudden, M.T., Rapp, D.N. How Visual Displays Affect Cognitive Processing. Educ Psychol Rev 29, 623–639 (2017). https://doi.org/10.1007/s10648-015-9342-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-015-9342-2

Keywords

Navigation