Skip to main content

Advertisement

Log in

Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose: To determine the maximum tolerated dose (MTD) and characterize the dose-limiting toxicities (DLT) of 17-AAG, gemcitabine and/or cisplatin. Levels of the proteins Hsp90, Hsp70 and ILK were measured in peripheral blood mononuclear cell (PMBC) lysates to assess the effects of 17-AAG. Experimental design: Phase I dose-escalating trial using a “3 + 3” design performed in patients with advanced solid tumors. Once the MTD of gemcitabine + 17-AAG + cisplatin was determined, dose escalation of 17-AAG with constant doses of gemcitabine and cisplatin was attempted. After significant hematologic toxicity occurred, the protocol was amended to evaluate three cohorts: gemcitabine and 17-AAG; 17-AAG and cisplatin; and gemcitabine, 17-AAG and cisplatin with modified dosing. Results: The 39 patients enrolled were evaluable for toxicity and response. The MTD for cohort A was 154 mg/m2 of 17-AAG, 750 mg/m2 of gemcitabine, and 40 mg/m2 of cisplatin. In cohort A, DLTs were observed at the higher dose level and included neutropenia, hyperbilirubinemia, dehydration, GGT elevation, hyponatremia, nausea, vomiting, and thrombocytopenia. The MTD for cohort C was 154 mg/m2 of 17-AAG and 750 mg/m2 of gemcitabine, with one DLT observed (alkaline phosphatase elevation) observed. In cohort C, DLTs of thrombocytopenia, fever and dyspnea were seen at the higher dose level. The remaining cohorts were closed to accrual due to toxicity. Six patients experienced partial responses. Mean Hsp90 levels were decreased and levels of Hsp70 were increased compared to baseline. Conclusions: 17-AAG in combination with gemcitabine and cisplatin demonstrated antitumor activity, but significant hematologic toxicities were encountered. 17-AAG combined with gemcitabine is tolerable and has demonstrated evidence of activity at the MTD. The recommended phase II dose is defined as 154 mg/m2 of 17-AAG and 750 mg/m2 of gemcitabine, and is currently being investigated in phase II studies in ovarian and pancreatic cancers. There is no recommended phase II dose for the cisplatin-containing combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188(3):281–290

    Article  PubMed  CAS  Google Scholar 

  2. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228(2):111–133

    CAS  Google Scholar 

  3. Goetz MP et al (2003) The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14(8):1169–1176

    Article  PubMed  CAS  Google Scholar 

  4. Grenert JP et al (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272(38):23843–23850

    Article  PubMed  CAS  Google Scholar 

  5. Whitesell L et al (1994) Inhibition of heat shock protein HSP90-pp 60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91(18):8324–8328

    Article  PubMed  CAS  Google Scholar 

  6. Supko JG et al (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36(4):305–315

    Article  PubMed  CAS  Google Scholar 

  7. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42(4):273–279

    Article  PubMed  CAS  Google Scholar 

  8. Goetz MP et al (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23(6):1078–1087

    Article  PubMed  CAS  Google Scholar 

  9. Solit DB et al (2007) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. Clin Cancer Res 13(6):1775–1782

    Article  PubMed  CAS  Google Scholar 

  10. Heath EI et al (2008) A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res 14(23):7940–7946

    Article  PubMed  CAS  Google Scholar 

  11. Ronnen EA et al (2006) A phase II trial of 17-(Allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest New Drugs 24(6):543–546

    Article  PubMed  CAS  Google Scholar 

  12. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15(17):2177–2196

    Article  PubMed  CAS  Google Scholar 

  13. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439

    Article  PubMed  CAS  Google Scholar 

  14. Rhind N, Russell P (2000) Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways. J Cell Sci 113(Pt 22):3889–3896

    PubMed  CAS  Google Scholar 

  15. Zachos G, Rainey MD, Gillespie DA (2003) Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. Embo J 22(3):713–723

    Article  PubMed  CAS  Google Scholar 

  16. Arlander SJ et al (2003) Hsp90 inhibition depletes Chk1 and sensitizes tumor cells to replication stress. J Biol Chem 278(52):52572–52577

    Article  PubMed  CAS  Google Scholar 

  17. McCollum AK et al (2008) Cisplatin abrogates the geldanamycin-induced heat shock response. Mol Cancer Ther 7(10):3256–3264

    Article  PubMed  CAS  Google Scholar 

  18. Nair SC et al (1996) A pathway of multi-chaperone interactions common to diverse regulatory proteins: estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1(4):237–250

    Article  PubMed  CAS  Google Scholar 

  19. Kim HR, Kang HS, Kim HD (1999) Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB Life 48(4):429–433

    PubMed  CAS  Google Scholar 

  20. Whitesell L, Bagatell R, Falsey R (2003) The stress response: implications for the clinical development of hsp90 inhibitors. Curr Cancer Drug Targets 3(5):349–358

    Article  PubMed  CAS  Google Scholar 

  21. Winklhofer KF et al (2001) Geldanamycin restores a defective heat shock response in vivo. J Biol Chem 276(48):45160–45167

    Article  PubMed  CAS  Google Scholar 

  22. Bagatell R et al (2000) Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res 6(8):3312–3318

    PubMed  CAS  Google Scholar 

  23. Nowakowski GS et al (2006) A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res 12(20 Pt 1):6087–6093

    Article  PubMed  CAS  Google Scholar 

  24. Ramanathan RK et al (2007) Phase I and pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin in adult patients with refractory advanced cancers. Clin Cancer Res 13(6):1769–1774

    Article  PubMed  CAS  Google Scholar 

  25. McCollum AK, Toft D, Erlichman C (2003) Geldanamycin enhances cisplain cytotoxicty through loss of Akt activation in A549 cells. Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics, Boston, MA, pp 16

  26. Aoyagi Y, Fujita N, Tsuruo T (2005) Stabilization of integrin-linked kinase by binding to Hsp90. Biochem Biophys Res Commun 331(4):1061–1068

    Article  PubMed  CAS  Google Scholar 

  27. Kramer CY (1956) Extension of multiple range tests to group means with unequal numbers of replications. Biometrics 12:307–310

    Article  Google Scholar 

  28. McCollum AK et al (2008) P-Glycoprotein-mediated resistance to Hsp90-directed therapy is eclipsed by the heat shock response. Cancer Res 68(18):7419–7427

    Article  PubMed  CAS  Google Scholar 

  29. Modi S et al (2007) Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol 25(34):5410–5417

    Article  PubMed  CAS  Google Scholar 

  30. Richardson PG, Chanan-Khan A, Lonial S, et al (2007) Tanespimycin (T) + bortezomib (BZ) in multiple myeloma (MM): pharmacology, safety and activity in relapsed/refractory (rel/ref) patients (Pts). J Clin Oncol, 2007 ASCO Annual Meeting Proceedings 25(18S):3532, June 20 Supplement

    Google Scholar 

  31. Tse AN et al (2008) A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin Cancer Res 14(20):6704–6711

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Patrick Burch M.D. for reviewing and providing thoughtful comments on the manuscript and Barbara Rainville for secretarial support.

Conflicts of interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Haluska.

Additional information

Grant support

CA66912 (C.E.), CA15083, CA090628 (P.H.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubbard, J., Erlichman, C., Toft, D.O. et al. Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Invest New Drugs 29, 473–480 (2011). https://doi.org/10.1007/s10637-009-9381-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9381-y

Keywords

Navigation